ON THE DEPENDENCE OF SAMPLING INSPECTION PLANS UPON
POPULATION DISTRIBUTIONS

By ALExaNpER M. Moobp
Unaversity of Texas'

1. Introduction. The foundations of the science of quality control and
quality determination have been laid by W. A. Shewhart [1, 2]. His ideas per-
vade what follows, but they are too well known to require discussion here. There
is, however, one that should be specifically mentioned, that of statistically con-
trolled production, because it provides the justification for the basic assumption
of this paper: When production is statistically controlled, there exists a probability,
P(N, X), that a lot of size N will contain X defective items. Shewhart has given
a complete discussion of assumptions of this nature.

Sampling inspection of lots may take one of two courses:

(a) Item inspection, in which a lot is accepted or completely inspected on the

basis of one or more samples drawn from the lot.

(b) Lot inspection, in which a lot is accepted or rejected on the basis of one

or more samples drawn from the lot.
The former has been extensively studied by Dodge and Romig [3, 4, 5]; the latter
has received little attention, but some of the basic ideas of Dodge and Romig are
applicable to this case also.

In this paper the approach to the general problem of lot inspection will be
different from that of Dodge and Romig in one important respect: The role of
the population distribution function will be emphasized, whereas they have
directed their attention to methods which require no knowledge of the popula-
tion distribution. Their techniques are particularly valuable when a prob-
ability distribution does not exist, that is, when production is not statistically
controlled. The interest here will be in the inspection of lots which may be
regarded as having been drawn from a statistical population. After the first
sample from the first lot has been drawn, something is known of the distribution
of that population, and as the inspection proceeds a great body of knowledge
may be accumulated. Here, if ever, is a real opportunity to explore and to use
a population distribution. The very nature of inspection supplies a continuous
flow of information about it. To neglect this information would be wasteful
indeed.

It is, therefore, the object of this paper to point the way to more efficient in-
spection procedures for situations in which production is statistically controlled.
The inspection procedure will be considered to be an inferential process—on
the basis of one or more samples, and with whatever information is available
about the parent distribution, an inference will be made regarding the quality

1 On leave to the War Department.
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of those items which have not been examined. A distinction is made between
the original lot and what remains of the lot after samples have been drawn.
The latter is the appropriate subject of the inference, inasmuch as the quality
of the sample is exactly known. The importance of this distinction will become
clear in the third section of the paper.

The subject is, unhappily, very briefly developed. The paper contains a few
fundamental results and some suggested proceedures that may be used to obtain
results of more immediate practical value. Time and facilities were not avail-
able for preparation of specific sampling plans.

2. Notation and formulae. The conventional notations P(w), P(u | v), P(u, v)
will be used to denote the probability of u, of w given v, of u and v, respectively.
A lot will contain N items of which X are defective. A lot from which one
sample has been drawn will be called an ‘“‘z-lot;” after ¢ samples have been drawn
it will be referred to as an “z*-lot.” The number of items in the i-th sample
will be n; of which x; are defective, except that the subscript will often be omitted
when 7 = 1. The number of items in an z*-lot will be:

k
Ne=N->2m

te=l

of which
k
X], =X — Z:&

te=l
are defective. )
The probability of z; for a given z* -lot is:
(1) P(zi| Xin) = <:‘) X&) (Niey — Xo) ™9 /NED
where (:‘) is the binomial coefficient, and

u® = uwu — 1w —2) - (u—0v+1).
Under this conditional distribution, the 72-th factorial moment of z; is:
2 E(xﬁ"" l Xia) = n$""X$'2§ N?ﬂ ’
and the m-th factorial moment of X; is:
@®) E(X{™ | Xia) = M{PXTY/NE.
Repeated application of (3) to (2) results in:
@) E@{™) = n{"EX™)/N™.
In similar fashion it may be shown that:

k k
(5) E (H xﬁ"‘-") = I n{™ BE(X®™) /N,
t==1

tm=]
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3. Single sampling. Consider a population of lots of fixed size N such that
the probability that a lot will contain X defective items is P(X). If z is the
number of defective items in a sample of size n drawn from one of these lots,
then the joint probability of z and X is:

,n) X(z)(N _ X)(n—z)

6) Pz, X) = ( —

z P(X).

The fundamental result of this paper is:

TrEOREM 1. The correlation between the number of defective items in the sample,
x, and the number of defective items in the remainder of the lot, X; = X — z, 18
positive, zero, or negative according as the variance, ox , of X is greater than, equal
to, or less than A — A?/N, where A represents the expected value of X.

To prove this statement, one need merely compute the covariance between
z and X, :
@) rex,0.0x, = 2 (X — 2)P(z, X) — E(z)(4 — E(z)).

z,X

Summing first on z with the aid of (2):

Tex, 0201, = O (1‘- xt— " x® _ .’iX)P(X) — E@)(A — E())
T \N N® N
which may be reduced to:
®) T2x, 0z 0x, = %((ZJVV—:,% [a§ - ( - .‘%;)]
by employing the definitions of A and o7 together with the relation,
E(z) = nA/N,

which follows from (4) on putting m = 1.

The fact that A — A®/N is the variance of a binomial distribution with mean
A and range N, suggests:

TreoreM 2. If X has the binomial distribution,

© P = (X ppa - o™,

then x and X — z are independently distributed.
This statement is readily verified by substituting (9) in (6), and X, for
X — z; a rearrangement of factors then gives:

P x) = [ (M - ][ (Y i, e - .

It is clear that additional samples drawn from such lots will have the same
property. Thus, sampling of lots drawn.from a binomial population will pro-
vide no basis whatsoever for inferences concerning the remainder of the lot.
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The question naturally arises as to whether distributions P(X) exist for which
rle = :i:l.
Tueorem 3. If

PX)=1 X=A, A0orN

a0 =0, Xs#A,
then r.x, = — 1;4f
v P(X) = p, X=0
1) =1-7p, X=N
= 0, X=12++,N -1,

then r.x, = 1. These are the only distributions which lead to these values of T.x, .
It is first necessary to compute

n® N-—n A’
(12) == §o [x t m( - W)]
2 (N - n)(” 2 n A2
(13) = —ye |ty —T\A~F

by means of (2), (3), and (4). These, together with (8), may then be used to
reduce the condition, r2x, = 1, to the following condition on P(X): either

(14) 2 (X — 4)P(X) =0,
or
(15) ? X(N — X)P(X) =0,

whence the theorem follows at once. The distributions defined by (10) and
(11) will be referred to hereafter as P_(X) and P.(X) respectively.

THEOREM 4. The correlation, r.x , between x and X is positive unless X is dis-
tributed by P_(X) in which case 1t 1s zero.

Computing the covariance by means of (2), (3), and (4), one finds that

(16) Tzx0z0x = nO'?Y/N-

The reason for so carefully distinguishing between the x-lot and the original
lot is now apparent. While the number of defective items in the sample is al-
ways positively correlated with the number of defective items in the original lot
(Theorem 4), it may be negatively correlated with the number of defective items
in the z-lot (Theorem 1). The normal practice is to reject (or completely in-
spect) the z-lot if the sample has an excessive number of defectives, but when
the distribution is sharper than a binomial distribution (¢% < A — A*/N) just
the reverse should be done. It is assumed, of course, that defective items would
be removed from the sample during its inspection when the inspection was non-
destructive.
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It is clear that the basic rationale of a sampling inspection plan depends on
the condition of Theorem 1. Having chosen a sample size n and an acceptance
number @ (defined by Dodge and Romig [1]), an z-lot would be

Accepted when z < a ifoy > A — A*/N
Rejected whenz > a  if o > A — AY/N
Accepted whenz > a  if ox < A — A*/N
Rejected whenz < a if o < A — A*/N.

Thus, it is essential that the first two moments of the population distribution be
known accurately enough to determine the sign of o — (4 — A%/N) before an
efficient inspection plan can be devised.

but

4. Multiple sampling. In this section are given similar criteria for guidance
in formulating more elaborate sampling plans. The actual computations are
elementary and will be omitted.

THEOREM 5. The mean and variance of the number of defective ttems in a sample
drawn from an x*-lot are:

@an) E@z:) = n;A/N

nsz) A2

TueOREM 6. The mean and variance of the number of defective items in an
[
z'-lot are:

19) E(X;) = N:A/N

N® N - N: A?
(20) Ui":l‘\’ﬁﬁ[x"i‘ "—1<A—F>].

THEOREM 7. The correlation between the numbers of defective items in the i-th
and j-th samples ts:

1 niny A?
@0 e = e [~ (4 %))
z40z;

TaroreM 8. The correlation between the numbers of defective items in the i-th
sample and the x’-lot is given by:

. 2 \
(22) T2;x;02,0x; = E'(-N'—‘_]-z[ ox + y - N (A i)]y > .7

N® =1 N
:N; A? .
@) - ER “w)]' i<

Thus, the correlation is always positive if the sample is part of the lot even when
X has the distribution P_(X), except only the case covered by Theorem 4 when
j = 0. The correlations (21) and (23) will be positive or negative in accordance
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with the condition of Theorem 1. The extreme values of all these correlations
are again given by the distributions P_(X) and P,(X) defined in Theorem 3.
When P(X) = P.(X), they all become plus one; when P(X) = P_(X), they
become:

(24) Toz; = — Vuni/(N — n)(N — ny),
(25) rax; = V(N — N;)/N;(N — nJ), 1>
(26) = — VnN;/(N — n)(N — Ny), t<J

For ¢ = j = 1, this last expression becomes minus one in accordance with Theo-
rem 3.

6. Formulation of inspection plans. In practice, the formulation of specific
sampling inspection plans would naturally begin with the examination of a
preliminary sample (or samples) in order to estimate the first two moments of
the population distribution. It would then be convenient to have some simple
standard functional form which could be fitted to the distribution by means of
these first two moments. Such a standard form must obviously contain two
arbitrary parameters and should represent a discrete distribution with range N.
The simplest function known to the author which satisfies these conditions is:

(27) Pl(X) — <§> C(x) D(N-—X)/(C + D)(N).

But it will be seen that this distribution is always sharper than the binomial
distribution with the same range and mean. Hence a second form is suggested,

(28) Py(X) = @) C+X)D+N-X)"2/)C+D+N+1P,

which, it turns out, is always flatter than the binomial distribution with the
same range and mean. It is proposed that these two functions be used as
standard forms in the belief that the simplicity of their functional form is a
convenience which outweighs the inconvenience of having to study two separate
functions.

The factorial moments of these distributions are:

N
(29) 2 X PyX) = N™C™/(C + D)™
° .
(30) 3 X™Py(X) = N™@C + m)™/(C + D +m+1)™

0
The variances are:

NCD(C + D — N)
C+DXC+D-1)

S (X — A _NC+DDO+ DWW +C+D+2
(32) ZO)(X AP Py(X) = Tt DT DS

(31) ; (X — A)'Py(X) =
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Examination of the expression, o — (4 — A?/N), reveals that for Py(X) it is
always negative, while for Py(X) it is always positive. Both Pi(X) and P.(X)
approach the binomial distribution when C and D become large in a fixed ratio.
Py(X) becomes P_(X) when C = Aand D = N — A. As C and D become
larger, the distribution becomes flatter until in the limit it is the binomial dis-
tribution. P,(X) becomes the rectangular distribution, P(X) = 1/(N + 1),
when C = D = 0, and becomes sharper as C and D increase.

The two distribution functions will not serve to approximate U-shaped dis-
tributions, and P;(X) has the disadvantage that C and D must be integers when
they are less than N if negative probabilities are to be avoided, but since C 4+ D
will be greater than or equal to NV in any case, and much greater than N in most
cases, this is not a serious limitation. The two functions are reproduced when
the marginal distributions for samples are computed:

Py(xz;) = . 2 P, -, m| X)PyX)
e
(33) .
=Q>W”“mW0+mW

PZ(xi)= Z P(xlr"' ,:D.IX)Pz(X)

X Z1ye ¢ 9sZi=—1

(34) .
=CDW+WW”D+m—W“”Ww+D+m+nW%

This is a most valuable property for two reasons. In the first place, it will
appreciably facilitate the tedious machine calculations necessary in the work of
providing specific optimum sampling plans. In the second place, it will simplify
the study of the population distribution of lots by means of samples from those
lots.

These two distributions should, then, provide an adequate basis for the
formulation of sampling inspection plans in most circumstances.

6. Efficiency of sampling inspection. There are two aspects to the efficiency
of an item inspection plan: the inspection aspect, which would be measured by
the proportion of defective items eliminated, and the sampling aspect, which
would be measured by the difference between the proportions of defective and
good items examined. These two measures are primarily functions of the
amount of inspection; the former will be large when the amount of inspection is
large, and the latter will ordinarily be large when the amount of inspection is
small. They will not, therefore, serve as useful criteria for excellence. The
measure to be used here is:

(35) E = RB — Rq

where R ; is the proportion of defective items examined, and R ¢ is tie proportion
of good items examined. It will be zero when the inspection plan is not at all
selective, and will be 1009, when all of the defective items and none of the good
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items are examined. It measures both aspects mentioned above, but has the
disadvantage that it emphasizes one or the other for different amounts of in-
spection. It is not, therefore, a particularly good measure of efficiency, but it is
a good criterion. It should ordinarily be maximized.

For single sampling with an acceptance number, a, and with a population dis-
tribution sharper than the binomial, the number of items inspected on the
average per lot is:

36) I=n+ N —n) > P@&)
0
and the number of defective items inspected on the average per lot is:
N a

37) B = E(z) + ; foj (X — z)P(z, X)
The efficiency will be:
(38) E=B/A—-(I~-B)/N - A4)
which may be put in the form:

_N (N — n) < A>
after substituting (36) and (37). This may be further simpliﬁed to:

_N (N - n) e+1, ]

where P, (x) is the marginal distribution of x for samples of size m. For dis-
tributions flatter than the binomial, the limits of the summations on z would
be a + 1 to n throughout, instead of 0 to a.

THEOREM 9. For a fixed value of n, the acceptance number which mazimizes E
is a = E(z) when X is distributed by Pi(X) or Px(X).

The expression in the brackets of (40) becomes:

E@) — 2

@) c+D=n'"®
when (33) is substituted for P(z), and becomes:

z — E(z)
“2) CFDFntal=®

when (34) is substituted for P(z). This theorem is true for a wider class of dis-
tribution functions, P(X), but is not worth pursuing too deeply because its main
value is in the light it throws on the general nature of inspection plans. It will
be a rare case in practice when n is fixed and a is unrestricted. Some idea of the
manner in which E depends on population distributions can be attained by com-
puting it for some simple distributions, and by examination of equation (40).
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E can be 100% only when all submitted items are defective, but it will
obviously be very near 1009, when the distribution is P (X) if samples of one
are used. However, a more reasonable maximum might be 509, which is the
largest possible value when the distribution is rectangular (as is shown in the
next section). As the distribution becomes sharper, the maximum efficiency
decreases to zero when the binomial distribution is reached. As the distribution
becomes still sharper, the efficiency increases until it again reaches 509 for the
distribution P_(X). Thus the efficiency is limited, and, in fact, will ordinarily
be further reduced by conditions (fixed amount of inspection, or fixed outgoing
quality level, for example) which will not allow the unrestricted maximum
efficiency to be used.

7. Sampling plans for the rectangular distribution. kxcluding the extreme
distributions, P_(X) and P, (X), the distribution which provides the simplest
illustration of some of the ideas above is the rectangular one:

(43) PX)=1/N+1), X=012"--,N,
the mean and variance of which are:
(44) A = N/2
ox = N(V + 2)/12.
The marginal distribution of z is:
(45) P@) = 1/(n + 1),
and the efficiency is:

N —=n)(n—a)(a+1)
N(n+ 1)(n + 2)

The values of » and a which maximize this expression are:

n=~+N+2-—2

(46) E=2

47
#7) a=(/N+2-23)/2
whence
_fp__ 1 \,_VN+t2-2
) B = 5(1- 7 )

or nearly 50% for large N. This plan eliminates almost 75% of the defective
items and entails examination of about 25% of the good items. 509, of all
items will be inspected.

If the proportion of items to be inspected is fixed at r, then the maximization
of E is subject to the restriction:

(49) t™N =n+4+ (N —n)(n —a)/(n+ 1)
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and results in:

0) n = —"N@ =1+ VwN(2 — 1)+ NeN + 2r — (N — Nr — 1)

Nl-17r)—-1
or for large N,
1) n = VrN/1 —r)
a = +/r(1 — »N.

If the average outgoing quality (as defined by Dodge and Romig) is to be fixed
at p (the proportion of defectives after inspection on the average), then the
maximization of E is subject to the condition:

- WV = n)(a+2)?
P= NaF2®F (N = n@+ 20

and results in the relation:
(63) (N —=n)n —a) = (a+ 1)+ 1)(n + 2).

When N is large relative to 1/p, the solution of these last two equations is ap-

proximately:
n=N 1/ 1/1;10 -1
p

(54) -

— 4
a 1/1—;)"'

The same result would have been obtained had the amount of inspection been
minimized subject to (52).

(52)

8. Summary. Methods of sampling inspection in current use have been made
independent of any population distribution that may exist. When production
is statistically controlled, a population distribution may be postulated. In
such circumstances it is to be expected that knowledge gained of the population
by repeated sampling will be a valuable aid in specifying efficient sampling
inspection techniques. This paper is a preliminary investigation of the relation
of lot sampling inspection plans to population distributions.

Lots are assumed to be drawn from a population such that there is a unique
probability the lot will contain a specified number of defective items. It is
shown that:

1. The number of defective items in a sample from a lot is positively or nega-
tively correlated with the number of defective items in the remainder of
the lot according as the population distribution is ‘“flatter” than or
Ssharper”’ than a binomial distribution. Distributions are found for which
this correlation is plus or minus one.
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2. If the distribution is the binomial one, the number of defective items in
the sample is distributed independently of the number of defective items
in the remainder of the lot. Thus a sample can furnish no basis for an
inference concerning the remainder of the lot.

3. The correlation between the number of defective items in the sample and
the number of defective items in the original lot is positive.

These results are generalized for repeated sampling of one lot.

There is discussed a standard functional form which can ordinarily be fitted
to population distribution functions for purposes of constructing sampling
inspection plans.

It is shown, for a class of distribution functions, that a single sampling plan for
nondestructive inspection will be most efficient in a certain sense when the
acceptance number is equal to the expected number of defective items in the
sample.

Optimum single sampling plans for nondestructive inspection of lots with a
rectangular probability distribution are determined for restricted amount of
inspection and for restricted average outgoing quality.
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