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1. Introduction. A sequence of variates x;, ---, 2y is said to be a random
series, or to satisfy the condition of randomness, if z; , - - - , z» are independently
distributed with the same distribution; i.e., if the joint cumulative distribution
function (c.d.f.) of z;, ---, zx is given by the product F(x,) - - - F(x») where
F(z) may be any c.d.f.

The problem of testing randomness arises frequently in quality control of
manufactured products. Suppose that x in some quality character of a product
and- that x;, 22, - -+, zn are the values of x for N consecutive units of the
product arranged in some order (usually in the order they were produced). The
production process is said to be in a state of statistical control if the sequence
(1, - -+, xy) satisfies the condition of randomness. A number of tests of ran-
domness have been devised for purposes of quality control, all having the fol-
lowing features in common: 1) They are based on runs in the sequence z;, « - -,
Zy . 2) The test procedure is invariant under topologic transformation of the
z-axis, i.e., the test procedure leads to the same result if the original variates
x, +--, Zy are replaced by z1, -+, oy where z, = f(z.) and f(¢) is any con-
tinuous and strictly monotonic function of ¢. 3) The size of the critical region,
i.e., the probability of rejecting the hypothesis of randomness when it is true,
does not depend on the common c¢.d.f. F(z) of the variates z;, --~, z» . Con-
dition (3) is a fortiors fulfilled if condition (2) is satisfied and if F(z) is continuous.
The fulfillment of condition (3) is very desirable, since in many practical appli-
cations the form of the c.d.f. F(z) is unknown.

Tests of randomness are of importance also in the analysis of time series (par-
ticularly of economic time series) where they are frequently based on the so-
called serial correlation. The serial correlation coefficient with lag h is defined
by the expression® (see, for instance, Anderson [1])

i -xaxh+a - (g x.,)2/N

¢)) Ry = "":i-l . (é xu)2 /N

where 2., is to be replaced by s.q—n for all values of & for which » + a > N.
The distribution of R; has recently been studied by R. L. Anderson [1], T.
Koopmans [2], L. C. Young [3], J. v. Neumann [4, 5], B. I. Hart and J. v. Neu-

1 Presented to the Institute of Mathematical Statistics and the American Mathematical
Society at a joint meeting at New Brunswick, New Jersey, on September 13, 1943.
2 Some authors (see, for instance, [2] p. 27, equation (61)) use a non-circular definition.
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mann [6], and J. D. Williams [7], under the assumption that z;, -+, zx are
independently distributed with the same normal distribution. Thus, in addition
to the randomness of the series (x;, ---, xx) it is assumed that the common
c.d.f. of the variates z;, ---, xy is normal. This is a restrictive assumption
since frequently the form of the common c.d.f. F(x) of the variates z,, -+ - , zn
is unknown.

The purpose of this paper is to develop a test procedure based on R, such that
(a) if F(zx) is continuous the size of the critical region does not depend on the
common c.d.f. F(x) of the variates z;, - -+, z», thus making an exact test of
significance possible also when nothing is known about F(z) except its continuity;
(b) if F(x) is not continuous, but all its§ moments are finite and its variance is
positive, the size of the critical region approaches, as N — «, the value it would
have if F(x) were continuous. Thus in the limit an exact test is possible in this
case as well. We will refer to the case where the form of F(z) is unknown as the
non-parametric case, in contrast to the case when it is known that F(z) is a
member of a finite parameter family of ¢.d .f.’s.

The test based on the serial correlation seems to be suitable if the alternative
to randomness is the existence of a trend® or of some regular cyclical movement in
the data. In the analysis of time series it is frequently assumed that this is the
case and this is perhaps the reason why tests based on serial correlation are
widely used in the analysis of time series. In quality control of manufactured
products the existence of a trend is often considered as the alternative to random-
ness, caused perhaps by the steady deterioration of a machine in the production
process. Thus, tests of randomness based on serial correlation could also be
used in quality control.

2. An exact test procedure based on R,. Let a, be the observed value of
Zgla =1, -+, N). Consider the subpopulation where the set (z., --- , zv) is
restricted to permutations of a1, ---, ay. In this subpopulation the proba-
bility that (x1, - - -, z») is any particular permutation (a1, -+ ,an)of (@, -,
ay) is equal to 1/N! if the hypothesis to be tested, i.e., that of randomness, is
true. (If twoof thea; (i = 1,2, ---, N) are identical we assume that some dis-
tinguishing index is attached to each so that they can then be regarded as distinct
and so that there still are N! permutations of the elements a, , - - - , ay.)

The probability distribution of Rj in this subpopulation can be determined as
follows: Consider the set of N! values of R, which are obtained by substituting
for (21, --+, zx) all possible permutations of (a1, ---, ax). (A value which
occurs more than once is counted as many times as it occurs.) Each of these
values of R has the probability 1/N!. On the basis of this distribution of Rs
an exact test of significance can be carried out. Suppose that « is the level of
significance, i.e., the size of the critical region. We choose as critical region a
subset of M values out of the set of N! values of Bs where M/N! = a. The sub-

3 If the existence of a trend is feared it may be preferable to use the non-circular statistic
discussed, for example, in [2].
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set of M values which constitute the critical region will depend in each particular
problem on the possible alternatives to randomness. For example, if a linear
trend is the only possible alternative to randomness, then the critical region will
consist of the M largest values® of R, . The value of the lag h will also be chosen
on the basis of the alternatives under consideration. For instance, if some
cyclical movement in the data is suspected the choice of h will depend on the
form of these cycles. The general idea underlying the choice of the subset of M
values and of the lag is to make the power of the test with respect to the alterna-
tives which are particularly feared as high as possible.

If R, has the same value for several permutations of (a;, - - - , ax), it may be
impossible to have a critical region consisting of exactly M values of R, . For
example, if @; = a; = - -+ = ay, then all the N! values of R; are equal, and the
number of values of R; included in the critical region must be either 0 or N!. If
F(z) is continuous the probability that two values of R, be equal is zero. This
explains why an exact test is always possible when F(z) is continuous. On the
other hand, if F(z) is not continuous, the probability that several values of R,
be equal is positive. However, the theorem we shall prove in Section 4 shows
that in the limit an exact test is possible even when F(z) is not continuous, but
has finite moments and a positive variance. For if the latter is true, the
probability is one that the weaker conditions for the validity of our theorem
(given at the end of Section 4) will be fulfilled.

Consider the statistic N
(2) Rh = Zl ZTaThia
where Zi+. is to be replaced by Zhte» for all values of « for which # + « > N.
Since in the subpopulation under consideration Y ~_; z, and > &1 xh are con-
stants, the statistic R; is a linear function of Rj in this subpopulation. Hence,
the test based on Ej is equivalent to the test based on Rs . Since R is simpler
than R; , in what follows we shall restrict ourselves to the statistic Ry .

We shall now show that, if & is prime to N, the totality T of the N! values
taken by R; is the same as T, the totality of the N! values taken by R, .

In the argument which follows it is to be understood that, whenever a positive
integer is greater than N, it isto be replaced by that positive integer less than or
equal to N which differs from it by an integral multiple of N.

Clearly it will be sufficient to show the existence of a permutation p., p2, - -,
px of the first NV integers such that
Di+ 1 =D (¢=12---,N).

Such a permutation is given by
J = PGi-vhs1 G=12---,N).

Forif j % j/ then (j — 1)h 4+ 1 = (7 — 1)h 4+ 1 because h is prime to N. Hence
to every positive integer ¢ there is a unique positive integer j, (7, j < N) such

1 See footnote 3.
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that
i=G—-—Dh+1
Now

Pi+1=pG0mn1+1=7+1=pphu=piw,

which is the required result.

In what follows we shall restrict ourselves to the case when A is prime to N,
This is not a very restrictive assumption since in practice h will be small as com-
pared with N and by omitting a few observations we can always make N prime
to h. Since T} is the same as T; we shall deal with the statistic R; only. To
simplify the notation we shall write R instead of B;. Thus, the test procedure
will be based on the statistic

N-1

4) R = 21 TaTarr + Tuy.

If N is very small an exact test of significance can be carried out by actually
calculating the N! possible values of . However, this procedure is practically
impossible if N is not small. In Section 3 the exact mean value and variance of
R will be calculated, and in section 4 the normality of the limiting distribution
of R will be proved. Thus, if N is sufficiently large so that the limiting distribu-
tion of R can be used, a test of significance can easily be carried out. Difficulties
in carrying out the test arise if N is neither sufficiently small to make the computa-
tion of the N! values of R practically possible, nor sufficiently large to permit the
use of the limiting distribution. In such cases it may be helpful to determine
the third and fourth, and perhaps higher, moments of R, on the basis of which
upper and lower limits for the cumulative distribution of R can be derived.
(For a description of the Tchebycheff inequalities by which this can be done see,
for example, Uspensky, [8], pp. 373-380.) Since the limiting distribution is
normal it may be useful to approximate the distribution by a Gram-Charlier
series or to employ similar methods.

3. Mean value and variance of R.> It is clear that

E(R) = NE(xlxz) = ]ﬁ 2;,"2 [ 20 7]
)]

=r1__1[(a1+---+a}v)’-(a§+"- + aw)l.

To calculate the variance of R we first calculate the second moment of R about
the origin. We have

(6) E(Rz) = E(xlx2 + e + TN-1TN + xNx1)2
= NEziz; + 2NEzizizs + (N* — 3N)Ezzsx52s .

8 The first four moments of a similar statistic have been obtained by Young [3].
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To express the expected values Ezizs , Ezizszs , and Exyx,zsr, we shall introduce

the following notations for the symmetric functions of @, ---, ar : For any
set of positive integers 41, 4, - -+, % the symbol Si;,...;, denotes the sym-
metric function D e, +* D e, @&} -+ - Gof, where the summation is to be taken
over all possible sets of k positive integers as , - - - , ax subject to the restriction
that aw < N and ay # o, (u,v =1, -+, k).
From (6) we easily obtain
N 2N
=2 S,
EE) = yw =%t sm=nw =9 =
N’ —3N
S

@ D e

__ S» + 28 + Sun

N-1) W-DWNV-2) (N—-1HWN-2)

It will probably facilitate computation to express each of the symmetric func-
tions in the right member of (7) by a sum of terms, each a product of factors
S;(r=1,2, ---). One can easily verify the relationships

(8) Su =8 -8,
9) S = Su = 818 — 8
(10) Sz = Sa = 818 — 84
(1) Sp = 83 — 84
(12) S = SuS; — 281 = (St — S2)S1 — 2(S:8: — Ss)
= 8 — 38,8, + 28;
(13) Suz = S = Sen = SuS; — 285
= (8] — 82)8: — 2(8:1S5 — Sy)
= 818, — S — 28,8 + 28,
(14) Sllll = Slllsl - 33112
= 8f — 3818; 4+ 28:8; — 3838, + 387 + 65:8; — 65,
= 81 — 6818 + 85:18; + 353 — 653;.
It follows from (5) that

1
N=1
and from (7), (11), (13), (14), and (15) that the variance of R is given by
o(R) = E(R") — [ER)
(16) _ S8, B 4SI%+ 488+ S —28_ 1
T N-1 N-1)(N -2 (N -1

(15) ER) = (Si — Sy,

(82 — 8o
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The mean value and variance of R can easily be computed from (15) and (16)
as soon as the values of S;, Sz, S;, and S, have been determined.

The formulas (15) and (16) are considerably simplified if S; = 0. In the
special Base that S; = 0 we have

’ = - 82
(15 ER) = -5y —5
and

, 2 _ 82 — S, Sz — 28 83
(16) o(R) = N—1+(N—1)(N—2)_(N"1)2.

We can always make S, equal to zero by replacing @, by ba = as — N~ 1% a,.
This substitution is permissible, since it changes the statistic B only by an addi-
tive constant and consequently leaves the test procedure unaffected. Thus, in
practical applications it may be convenient to replace a. by b. and to use formu-
las (15’) and (16’).

4. Limiting distribution of B. Let {a.} (@ = 1,2, - - - ad inf.) be a sequence
of real numbers with the following properties:

a) There exists a sequence of numbers A, 4,, -+, 4,, - -+ such that
N
an Lissg (r=1,2, - adinf.)
N a=1
for all N. (This condition means that the moments about the oﬁgin of the
sequence @, , @z, - - - , @y are bounded functions of N.)
b) If
i =4[ S - (Za)].
N aml aml
then
(18) lim inf 6(N) > 0.
N
(This condition means,that the dispersion of the N values a1, @z, -+, ax is

eventually bounded below.)
Let R(N) be the serial correlation coefficient R as defined in (4), wherez, , - - -,
zy is a random permutation of a;, @z, - ,ay. We shall prove the following
TreorEM: As N — «, the probability that

E(N) — E(R(N))
o(R(N))

<t

approaches the limit

1 t
‘\/21!' ‘[eo ¢ dx
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For any function f(N) and any positive function ¢(N) let
J(N) = 0(6(N))
mean that | /(NV)/¢(N) | is bounded from above for all N, and let
JIN) = Q((N))
mean that
J(N) = 0(N))
and that limNinf |f(N)/¢(N) | > 0. Also let

J@N) = o(p(N))
mean that

S _
dm s =%

Let [p] denote the largest integer less than or equal to p.
To simplify the proof we shall temporarily assume:
¢) There exists a positive constant K such that, for every positive integral N,

N
(19) -K<8 =2 <k
aml

This restriction will be removed later.
LEMMA 1:

PIRIEDD Oy Qag *** Qay = O(N™h,
ay< s r<ag

PROOF: J +++ 0, Gq, ** @, can be written as the sum of a finite
a1<---<ag
number of terms where each term is a product of factors S, (r =1, 2, --. ).

This representation will be called the normal representation of Z oo E R
@a, . Since S, = 0(1) by (19) and S, = O(N) by (17) and since the number of
factors S, (r > 1) in a single term of the normal representation of ) - -+ 3 @4,
.+ @4, is at most [3k], the equation 3 --- Za,, cor Qe = ON By must
hold.

LeMMA 2: Lety = x; - - 232, wherez = i}y + - x;fi.,andi; >1(G=1,---,7).
If (1, - -+, zy) i3 @ random permutation of ay, -+, an, and if k, v, 41, -~ , ir
are fized values independent of N, then E(y) = O(N"~%),

Proor: Let E(y | k41, * -+ , Trsr) be the conditional expected value of y when
Th41, ** 5 Tiyr are fixed. It follows easily from Lemma, 1 that

E@| o, « - 5 3a4r) = OVHIT),
Hence also E(y) = O(N*™) and Lemma 2 is proved.
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Denote ZoTas1 by youle = 1, -« , N — 1) and zyz; by y», and consider the
expansion of (y; 4+ --- + y~)". Let y be a term of this expansion, ie., y =
u!—N_!zz—' Y2yt (<o < -0 < a,). We will say thatjtwo factors yq
and y; are neighbors if |a — 8+ 1| or |a — B8 — 1| is either Oor N. The set of
u factors Ya, , ** -, Ya, can be subdivided into cycles as follows: The first cycle
contains y., and all those y. which can be reached from y., by a succession of
neighboring y.. The second cycle contains the first y. of the remaining se-
quence and all those which can be reached from the first y. by a succession of
neighboring y,. The third cycle is similarly constructed from the remaining
sequence, etc. After a finite number of cycles have been withdrawn the sequence
will be exhausted. If m is the number of such cycles we will say that y has m
cycles.

LemMA 3: Let y be a term of the expansion (xyxz + -+ + zax) = (1 + -+
+ yn)" (r fixed). Let m be the number of cycles in y and k be the number of linear
factors in y if y is written as a function of z,, - -+ , zx (i.e., if we replace y. by
Zalats). Then the mazimum value of m + [3k] — k is equal to [3r].

Proor: First we maximize m + [3k] — k with respect to k£ when m is fixed.
If m < [3r], then the minimum value of k is obviously zero. Letm = [4r] + /
(* > 0). The minimum value of & is reached if each cycle consists of a single
factor y. and if each factor y. in y is either linear or squared. If r is even, then
the minimum value of k is 4 and if r is odd then the minimum value of & is
47’ — 2. Hence for m =[}r] 4+ r’ we have

max (m 4 [3k] — k) =[}r] — " ifriseven

and
= [§r] — " + 1if ris odd.

Hence maximizing with respect to m and % we obtain
max (m + [3k] — k) = [¥],

and Lemma 3 is proved.

LeMMA 4: The expected value of the sum of all those terms in the expansion of
(122 + - -+ + zN21)" for which m i3 the number of cycles and k the number of linear
factors (if y is expressed in terms of 2y , + - - , Tn) 18 equal to O(N™I—¥y

This Lemma follows from Lemma 2 and the fact that the number of terms y
with the required properties is O(N™).

LEmMMA 5:

E(lez 4 e 4 xle)" = O(N[M).

This follows from Lemmas 3 and 4.
Lemma 6: If r is even then

E@mz + -+ + zv2)” = (C}r o E@izh --- z2) ) + o(N™).
o ;
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Proor: It follows easily from our considerations in proving Lemma 3 that
m + [1k] — k < 3r for all terms in the expansion of (xzz + - -+ + zy1)” which
are not of the type z} - - - z; . Hence it follows from Lemma, 4 that the expected
value of the sum of all those terms in the expansion of [Tz + - -+ + zyz]
which are not of the type z} - - - z2 is equal to o(N*). Lemma 6 follows from the
fact that 27! is the coefficient of the terms of the type z} - - -+ z2 in the expansion
of (zix2 + --+ + zxx1)" and that the number of terms of such type is equal to
Ct. .

. E@mz+ - + zyz) . —ir .
LeMMa 7. %ll’g E (xl‘xz e— x:xl)’} = = 04f risodd and = 2771/ (3r)! if

T 18 even.
Proor: From Lemma 6 it follows that
(20) E(@w: + --- + zy1)’ = NE(zia3) + o(N) = Q).

The first half of Lemma 7 follows from Lemma 5 and equation (20). If r
is even then it follows from (20) that

Emz + -+ +ayz) . 2VCLrE@} - 2))

I lim r 2 2\4r
{E(@mzs + -+ + 2y21)’} Nosa N* (Bx13)
2 2
lim }rrl E'(xl; : :c;') )
27(3n)! (E(zi72))

It follows from (17), (19), and the normal representation of symmetric func-

tions that

lim
(21)

Y, .- Zafu ceral, = S5 4+ O(N*™,

“al<“a2<“‘<¢uk

From (17) and (18) we have S, = Q(N). Since

E@ -2 =r(3 -+ 2 s -- )NV —=1) - N —r+ 1)]7,
, &

8qy <agp< e
we obtain

E(i -+ @) _

@) % EED)

N=+o0

The second half of Lemma 7 follows from (21) and (22).

LemMMmaA 8: ,
. E(RV) _
(23) m mkyy — %
(24) lim ZE@) _

N-o 2(R(N))

Proor: Equation (24) is a trivial consequence of (23). From (15) E(R) =
0(1) and from (16) ¢(R) = Q(N*). The lemma follows easily from these rela-
tions.
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Proor oF THE THEOREM: According to Lemma 7 the r-th moment of R[E (Rz)]”’
approaches the »-th moment of the normal distribution as N — «. From this
and Lemmsa 8 the required result follows if condition (¢) holds. It remains
therefore merely to remove condition (¢). Assume now only that a;, az, -+,

G, - - - satisfy conditions (a) and (b).
R(N) is formed from the population of values a;, @z, ---, ay. Addition of
a constant g to @, , - - - , ay adds the same constant to all the values of R(N) and

hence leaves [R(N) — E(R(N))]/c(R(N)) unaltered. Let ¢ be —) a1 aa/N
and write b = a, + ¢™. Consider the sequences

B® =b{", bs”, -+, b G6=12, ---,adinf.).

From (17) it follows that the | q(”) | are bounded for all N. Hence the se-
quences B'” satisfy condition (a). They obviously satisfy condition (c). Since
8(j) is invariant under addition of a constant we have

i ~\2
hm inf = (}'_‘, B — <2 b.‘,“)) > 0,
a=1 aml

so that the B satisfy condition (b). Since [R(N) — E(R(N))]/e(R(N)) has
the same distribution in the sequence a; , @z, - - - , ay as in the sequence B,
the theorem follows.

It should -be remarked that the theorem remains valid if conditions (a) and
(b) are replaced by the weaker condition

ur/ut = 0Q1) (r=38,4, - ,adinf)

where

1 N 1 N r
My = N_a_1(aa _Naz-:lad) .
This follows easily from the fact that [R(N) — E(R(N ))]/a(R(N )) remains un—
altered if we replace the sequence a; , - - - , ay by the sequence ¢i , ¢ , - -+, cy

where
(=3 £9) [ 44)]
ca—<a.. N;aa NZ Qa ﬁZaa .
Conditions (a¢) and (b) are obviously satisfied by the sequence cf., -+, cy .

6. Transformation of the original observations.

Let f(¢) be a continuous and strictly monotonic function of £ (— o < ¢ < 4 ).
Suppose we replace the original observations a;, --- ,ay by di, -+, dy, where
de = f(aa) (@ =1, ---, N). We obtain a valid test of significance if we carry
out the test procedure as if d;, ---, dy were the observed values instead of
ai, -+, ay. We could also replace the observed values a,, -- -, ay by their
ranks. The question arises whether there is any advantage in making the test
on the transformed values instead of on the original observations. It may well
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be that by certain transformations we could considerably increase the power of
the test with respect to alternatives under consideration. This problem needs
further study.

6. Summary. A test procedure based on serial correlation is given for testing
the hypothesis that x,, ---, z» are independent observations from the same
population, i.e., that z;, ---, 2y is a random series. By considering the dis-
tribution of the serial correlation coeffigient in the subpopulation consisting of
all permutations of the actually observed values a test procedure is obtained
such that '

a) if the common c.d.f. F(z) is continuous, the size of the critical region,
i.e., the probability of rejecting the hypothesis of randomness when it is true,
does not depend upon F(z),

b) if F(z) is not continuous but all its moments are finite and its variance is
positive, the size of the critical region ‘approaches, as N — o, the value it
would have if F(z) were continuous. Thus in the limit an exact test is pos-
sible in this case as well.

It is shown that the test based on the serial correlation with lag & is equivalent
to the test based on the statistic®

N
E TaThta
a1

where Z5+. is to be replaced by h+.—x for all values of a for which # 4+ a > N.
If h is prime to N, the distribution of Zf ZaZhia 18 exactly the same as the dis-
tribution of B = 2.1 ZaZ14a -
The mean value and variance of B arc given by the following expressions:
ER) = (81 — 82)/(N — 1)
and

8: — & + S — 4818 + 48,8 + 8 — 28, _ (81 — 8’
N-1 N -1DWN -2 @ —-1)y
where S, =21 4 -+ + 25 .

It is shown that under some mild restrictions the limiting distribution of R is

normal. The test procedure can therefore be easily carried out when N is
sufficiently large to permit the use of the limiting distribution of R.

(R) =
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