ON THE PROBABILITY THEORY OF LINKAGE IN MENDELIAN
HEREDITY

By HiLpA GEIRINGER
Bryn Mawr College

1. Introduction. If for a certain generation the distribution of genotypes is
known and a certain law of heredity is assumed, the distribution of genotypes in
the next generation can be computed. Suppose there are N diﬁ'erent genotypes
in the nth generation in the proportions zi™, - -+, zy” where E z{™ =1 and

foml

denote by pix the probability that an offspring of two parents of types « and A
N
be of type 7 where E po = 1forall xkand A, and pi» = pr.. Assuming pan-

mixia, identical dxstrlbutlons z{™ for males and females, etc., we can derive
x("“) from z{™ by means of the formula

(1) (n+l) = Z p. Eu)x{n) (1: —_ 1’ 2’ ce N).

K A=l

Thus if the distribution z” is given for an initial generation we can deduce suc-
cessively the xfl), xf”, - for subsequent generations. Besides, one may wish
to express the z{™, for any n, explicitly in terms of the initial distribution z{*,
i.e. to “solve’’ the system (1). A further problem consists in determining the

limit-distribution of the genotypes lim z{® (i = 1, ---, N).

Mendel’s heredity theory is based on some ingenious assumptions which are
known as Mendel’s first and second law. They enable us to define the possible
genotypes and to establish the recurrence formula (1); they will be explained and
formulated in sections 2and 3. It is well known that in Mendel’s theory it makes
an essential difference whether one or more ‘“Mendelian characters’’ are con-
sidered. In the first case Mendel’s first law only is used; there are with respect
to this character but N = 3 different types and the recurrence formula (1) can
be derived without difficulty. As early as 1908 G. H. Hardy [5] established the
simple but most remarkable result that under random breeding a state of equilib-
ri(u)m is reached in the ﬁrst filial generation, i.e. z{” # z{¥ (in general) but z{™ =
xil (n = ’)

In the case of m 2 2 Mendelian chara,cters Mendel assumed tndependent
assortment of these cha.ra.cters (Mendel’s second law). However, within four
years after the dramatic rediscovery of Mendel’s fundamental paper [10}, observa-
tions were reported that did not show the results expected for two independent
characters. T. H. Morgan [11] and collaborators in basic contributions, con-

1 See also [12] where the stability of the particular ratio 1:2:1 is recognized.
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26 HILDA GEIRINGER

cluded that a cerain linkage of genes was to be assumed.” Taking that as the
starting point, the main purpose of this paper is to establish the basic recur-
rence formula for the general case of linkage, to solve the corresponding system
of difference equations, and to determine the limit distribution of genotypes.
Throughout the paper “multiple alleles” are considered instead of making the
frequent restriction to two alleles. This generalization is, however, an obvious
one (see section 1).

In order to deal with the general problem a linkage distribution (1.d.), is in-
troduced. This concept, which seems to be basic to the whole problem, refers
to the probability theory of arbitrarily linked events [3]. The crossover prob-
abilities, (c.p.), defined by Morgan and Haldane are, notwithstanding their high
importance, not sufficient for our purpose. (They turn out to be certain mar-
ginal distributions of the 1.d.) If, however, m = 2 and N = 10 (for two alleles),
a case studied by W. Weinberg [16] H. S. Jennings [7] and R. B. Robbins [14],
the c.p. is equivalent to the 1.d. But for the general case the l.d. is needed and
the desired results must be derived by other methods than explicit computation,
which is feasible if m equals one or two. The original problem of independent
assortment appears, of course,-as a particular case of the general linkage. This
problem was completely solved in 1923 by H. Tietze [15] in a very interesting
but rather involved paper. The proof of the limit theorem given in the follow-
ing pages for the general case is far simpler and shorter than the treatment of the
particular case in the older paper and is therefore a simpler proof of Tietze’s
theorem.

After a brief consideration of the classical case m = 1 (section 2), the problem
of m arbitrarily linked characters is discussed in section 3 with a particular view
to a clear statement of the biological and mathematical assumptions. The 1.d.,
its relation to the c.p., and some basic properties of both are considered in sec-
tion 4. Then, after a very concise consideration of the case m = 2 (section 5),
the basic recurrence formula is established in section 6 from which we deduce in
section 7 two general limit theorems. The main point is that the limit dis-
tribution of genotypes is ‘“uncorrelated” and equals the product of certain
marginal distributions of first order deduced from the distribution for the first
filial generation. As a kind of an appendix section 8 contains the solution of
the system of equations furnished by the general recurrence formula.

In the second part of the paper an attempt is made to contribute to the linear
theory or theory of the linear order of the genes, from the point of view of prob-
ability theory. Accordingly, the linear theory consists in certain assumptions
on the 1.d., or on an equivalent distribution which will be called crossover dis-
tribution, (c.d.), and which is more appropriate for this purpose. (Sections 9

2¢To T. H. Morgan and his associates and students is due the credit for opening up this
new field of genetic research; and the small vinegar fly Drosophyla Melanogaster upon which
most of their work has been based, has now assumed as great an importance in genetics as
the famous peas studied by Mendel.”” (Sinnot and Dunn, Principles of Genetics, New York
1939.)
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and 10.) In this connection in section 10 a probability definition of the “dis-
tance’” d;; of two genes is proposed which, far from being contradictory to Mor-
gan’s ideas on the subject seems to formulate them mathematically; (the dis-
tance d;; between two genes ¢ and j is defined as the mathematical expectation
of the number of crossovers between 7 and j). This distance is of course additive
as it ought to be in the framework of the linear theory.

A problem frequently discussed is whether the crossover probabilities are
independent of each other (this independence is not identical with Mendel’s
free assortment). Observations (see [4a]) did not seem to substantiate this as
a general assumption. Then it was concluded that there exists a so-called
interference which prevents, i.e. diminishes the probability of crossovers too
‘“near” to each other. (See also [13].) It seems to the author that observations
on interference should be interpreted in terms of appropriate assumptions re-
garding the 1.d. or the c.d. Again the remark holds that the c.p.’s are not suffi-
cient for describing the situation. Hence in section 11 an attempt is made to
understand “interference” by means of the c.d., accepting however the linear
theory. It is well known that the explicit presentation of consistent dependent
distributions is not trivial (see e.g. [2]). Not many different types of “conta-
gious” distributions are known. In section 11 two such schemes are proposed
which, though simple enough, seem to correspond to the general idea of inter-
ference. They contain as particular cases the case of independent and the case
of disjoint crossovers.

2. One Mendelian character. Hardy’s theorem. It will be helpful to start
with the simple and well known case of one character introducing the basic con-
cepts in a way appropriate for generalization.

Mendel recognized that the distribution of certain hereditary attributes in
organisms is similar to the distribution of attributes in a probability distribution.
With respect to a Mendelian character each individual is characterized by two
elements called genes which represent two possible alternatives. The color of
the flower of peas is such a character, the alternatives being red and white.
With respect to this character each plant belongs to one of the three types:
red-red, red-white, white-white.® These are three different genotypes.—In this
paper genotypes only will be considered. The difference between genotypes and
phenotypes and the related concepts of dominant and recessive qualities will
not be dealt with. This is an example of a two-valued Mendelian character, i.e.
a character for which only two possibilities exist or, using a more technical term,

31t will be assumed throughout that the individuals considered are ‘“‘diploid” That
means in the terminology of the preceding example that the only possible types are RR,
RW, and WW; or, using A and a: AA, Aa, and aa. Modern research has however revealed
that situations may arise where ‘tetraploids’, ‘‘hexaploids”, etc. briefly ““polyploids”’
prevail, i.e. types like A=a¥ (with £ + y = 2p). In this case the reproduction cell segregates
A%1g”t (with z, + y1 = p). Stability is no longer reached in the first filial generation. See
[4b].
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with two alleles. The case of two alleles is most frequently considered in the
biological literature where the two possibilities correspond mostly to a dominant
and a recessive quality. There is, however, no difficulty in considering from the
very beginning the general case of mulliple alleles where the character under
consideration is assumed to be r-valued, i.e. susceptible to r different manifesta-
tions (e.g. r = 5 possible colors of a plant). These r possible values may be
distinguished by the r arguments, 1, 2, --- r

In the consideration of only one Mendelian character Mendcl’s first law only
is used which may be stated as follows:

(a). With respect to one r-valued Mendelian character each individual
belongs to one of the r(r + 1)/2 possible types, each type being determined
z=1-,7
Yy = 1, .o
(b). In the formation of a new individual each parent transmits one of its
two genes to the new individual, the other gene coming from the other parent.
(c¢). The probability for the transmission of either gene is the same and

thus cquals 3.

We wish to deduce the distribution of genotypes in the (n + 1)st generation
from the distribution of genotypes in the nth generation under the assumption of
complete panmizia (random breeding). Moreover, assume that the given initial
distributions of genotypes as well as the laws of heredity are the same for males
and females.” In computing successively the new distribution from the pre-
ceding one we shall always assume that the distribution of individuals partici-
pating in the process of procreation is the same as their distribution when born.

Let us denote a genotype by (z;y), @ =1, ---,r,y =1, ---, 7). Tofix
the ideas we shall assume through this paper that the gene x before the semi-
colon was transmitted by the mother, and the y after the semicolon by the father
of the individual. In some cases which will be considered later this distinction
will be relevant. Denote by w'™ (z; y) the probability of the type (z; ) in the
nth generation. Since the laws of heredity are the same for males and females
we have w™ (z;y) = w™ (y; z) and thus have for each generation a symmetric
distribution of genotypes with r™ probabilities whose sum is one. There is,
however, according to principle (a) no difference between the types (zr; y) and
(y; x) and therefore it is preferable to group together these types, thus intro-
ducing forz =1, ---,r;y =1, -

by a pair of elements (genes) z and y

v(n)(x; x) — w(u)(x; :C)

2
: v(")(:c; y) = w™(z; y) + w'™ (y; ) where z < y.

4¢Jt is simplest to deal with mere pairs of alternative conditions (alleles) but a thecory
remains seriously inadequate unless capable of extension to multiple alleles.” ([17] p. 224).

5 It is obvious that we may admit without any change of result different distributions for
males and females in the initial generation, as long as random mating takes place after-
wards.



PROBABILITY THEORY OF LINKAGE 29

Consequently there are r(r 4+ 1)/2 such probabilities:

@) 0" 1,07 (152), - 0 (L5 0), 025 2), - 0@, - 0 ()
where

3) 2 @y =1 (n=0,1,2 ).

Ty

Now define p'™(z) as the probability that in the nth generation a male (or a
female) individual transmits the gene x. Obviously we have:

P& = 3o 2) + 30V D) + e + 035 )

4

® +30"@z+ 1)+ o+ 20 V()
and

4) 2. p"@ =1

Te=1

In fact, the gene = will be transmitted, if an individual possesses this gene and
also transmits it. The individuals of type (y; z) (or (x; y)) all possess the gene
x and transmit it with probability % if ¥ ¢ z and with probability 1 if y = x.
Besides, the probability of the type (z; ) in the (n 4 1)st generation is ob-
viously p™ (@)p™(y):

®) w™ (@ y) = p"@)PV @) = P (y; 2)

or in terms of the v (z; )

v(n+l)(x; x) = [p(n)(x)]z

v (z;y) = 2p™ @)™ (¥) @ = y).
Hence by (4) and (5'), v"*" has been expressed in terms of » and the recur-
rence-problem is solved. The distribution w" P (z; y)}(n = 0) shows “inde-

pendence,” and is therefore known to be stable. In fact, computing in the same
way p""™V(z) we get

P (@) = 320 (Wp™ (@) + -+ " @p™ (x)
+ %.2p(n)(x)p(n)(x + 1) + .o+ %‘2}7(")(23)17(")(7‘)

= p‘"’<x>-§ p™ ) = p™(z)

6

or
") = p™ (@)
(n = 0’ 1’2’ e )’ (.’1? = 1’ 2’ tec T).

This last formula contains G. H. Hardy’s famous result [5] that p™ (x) is the same
Sor all n:

(7) P(")(x) = p(o)(x) (n = 1’ 27 v ’)

(6)
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and because of (5'):
) v (z;y) = 0vP@;y) @Syn=23 ).

In case of only one Mendelian property the distribution of genotypes reaches a
stationary state in the first filial generation.

3. Basic assumptions in case of m Mendelian characters. A new situation
presents itself if there is more than one character. In case of m characters a
genotype is described by 2m numbers (x1, -+, Zm; %1, -+, Ym) or briefly (z; y)
(e.g. form = 5, r = 9:(1,2,3,4,6;2,7,3,5,9). There are primarily N = "™
possible types because on each of the 2m places any of the r numbers can be
written. Now, if the types (z; ¥) and (y; z) are considered as identical genotypes,

the number of different genotypes reduces to N, = % "+ 1) (eg. forr = 2,

m=1:N, = 3;forr = m = 2: N, = 10). It is essential for the understanding
of linkage that in counting this way two types like (1,3;5,7) and (1,7;5,3) or
(1,1;2,2) and (1,2;2,1) are considered as different although in both cases the
individual possesses with respect to the first character the gene pair 1,5 and with
respect to the second the pair 3,7. If no difference is assumed between two such
types the number of different genotypes reduces to N, = <—————T(T ;_ D) ) . (E.g.for
r=2:N=4" N, = £.2"(2" + 1), N, = 3"; hence for m = r = 2:N = 16,
Ny =10, N, =9 or forr = 2,m = 3:N = 64, N, = 36, N, = 27). Which
method of counting is the correct one?

The answer is that there are but N, different genotypes if Mendel’s second law,
the law of independent assortment, is accepted. Then and only then there is no
difference between types like (1,3:5,7) and (1,7:5,3). Under the assumption
of general linkage however, these types must be distinguished, not as individuals,
but with respect to their heredity properties, i.e. considered as parents of a new
generation. Under this assumption there are in general N, different types.
This will be discussed presently in more detail.

Let us first consider Mendel’s original theory as contained in his first and
second law. Analogous to (a), (b) and (c¢) in §2 we now formulate as follows:

(a’) With respect to m characters the genotype of an individual is char-
acterized by m pairs of numbers. Two individuals are of the same type if to
each of the m characters corresponds the same pair. Hence there are N, =

(r(r_;—_l_)) genotypes.

(b”) In the formation of a new individual a parent of type (x;, -+, Tm;
Y%, '+, Ym) transmits to the offspring, corresponding to each of the m char-
acters, one of the two genes which he (or she) possesses with respect to this
character.

(¢") The probability of transmitting any of these 2™ combinations is the
same and therefore equal to 1/2™.
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Consider e.g. the individual (1,2,3:1,4,7); the pair 1,1 corresponds to the
first character the pair 2,4 to the second and 3,7 to the third. Under the
assumptions of Mendel’s original theory this individual is of the same type with
(1,4,3; 1,2,7) and (1,2,7; 1,4,3), and of course with (1,4,7; 1,2,3), etc.
As m = 3, it may transmit eight combinations which in the preceding example
reduce to four, because the individual is homozygous in the first character.
These four combinations are 1,2,3 or 1,4,3 or 1,2,7 or 1,4,7 each with prob-
ability 2 X § = }.

The distribution of genotypes in successive generations under the assumption
of Mendel’s second law has been investigated by H. Tietze [15] who also con-
siders the limiting distribution as n — «. His results will appear as a particular
case of our general considerations.

In order to discuss the basic facts which lead to the idea of linkage let us for
the moment consider the case m = 2. Soon after the rediscovery of Mendel’s
work Bateson and Punett reported observations which did not give the expected
numerical results. To understand the type of such an observation assume that
a homozygous male of type (1,1; 1,1), [or any other homozygous type, e.g.
(2,3; 2,3)] is mated to a homozygous female of type (2,2; 2,2) [or to any homo-
zygous type different from the first e.g. (4,5;4,5)]. Obviously, in this case there
is only one possible kind of offspring namely (2,2; 1,1), [or (4,5; 2}3)]. But
if now one of these daughters is mated to a homozygous male of the original
type (1,1; 1,1), there are four kinds of possible offspring, namely (2,2; 1,1),
,1;1,1), (1,2; 1,1), and (1,1; 1,1), corresponding to the four combinations
of genes transmitted by the heterozygous (dihybrid) daughter [or (4,5; 2,3),
4,3; 2,3), (2,5; 2,3), and (2,3; 2,3)]; and according to the idea of free assort-
ment each of these four combinations should appear with the same relative
frequency: 3. But it was observed that the combined frequency of the two
types (1.1; 1,1) and (2,2; 1,1) was larger than that of the types (2,1; 1,1)
and (1,2;1,1). “The characters that went in together have come out together
in a much higher percentage than expected from Mendel’s second law, viz. the
law of independent assortment” [11]. Morgan, in his theory of the gene called
this “tendency” linkage. The idea is that the two genes 2,2 and 1,1 which
have been together in the maternal individual tend to stay together and.that
nature has to make an effort to produce a so-called crossing-over, i.e. a separation
of the genes ‘“‘that came in together,”—such that a female of type (2,2; 1,1)
may transmit the group 1,2 or the group 2,1. In other words, the idea of linkage
implies an influence of the grandparents.

According to observation the percentage of crossing over varies from 0 to 50
per cent, i.e. from complete linkage to free assortment. It will appear however
that in principle crossover-values greater than 50 per cent cannot be excluded.
It was also observed that the percentage of individuals of type (1,1; 1,1) equals
very nearly that of individuals of type (2,2; 1,1), as we would expect. In the
same way the percentages of types (2,1; 1,1) and (1,2; 1,1) are nearly equal,
their sum yielding the crossover-ratio. Hence the four probabilities correspond-
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ing to the formation of the four types (1,1; 1,1), (2,2; 1,1), (2,1; 1,1), and
(1,2;1,1) are assumed to be (1 — ¢)/2, (1 — ¢)/2, ¢/2, and ¢/2. It is important
to notice that these are at the same time the probabilities that the female of
type (2,2; 1,1) (which was mated to the homozygous (1,1; 1,1), transmits the
groups 1,1 or 2,2 or 2,1 or 1,2 respectively.

_m(m — 1)
B 2
probabilities. In this case Morgan assumes linkage-groups, each group consist-
ing of m; elements with Z m; = m, such that ‘“‘there is linkage between the

In the general case of m characters there are (7;) crossover

elements of each group but that the members belonging to different linkage
groups assort independently, in accordance with Mendel’s second law.”” This
idea will be reconsidered in Section 4.

If we now wish to solve our first basic problem, i.e. to derive the distribution
of genotypes in any later generation from an initial distribution of genotypes,
then the concept of crossover probabilities does not suffice. The complex
possibilities which arise if Mendel’s second law is no longer accepted as universally
valid cannot be adequately described in terms of crossover probabilities. Or,
more exactly: It will be seen that if m = 4 the crossover probabilities are no
longer sufficient, whereas for m = 2 and m = 3 this concept is general enough.
For the complete description of the hereditary mechanism in the general case a
so-called linkage distribution, 1.d., is needed which involves 2™ probabilities with
sum equal to one. Let us define this distribution.

Consider an individual of type (z1, -+, Tm; ¥1, -+ , Ym) = (z; y), where the
z are the maternal genes, the genes contributed by the mother of the individual,
and the y the paternal genes. Denote by S the set of the m numbers 1,2, - -- |
m, by A any subset of S, and by A’ the complementary subset A’ = S — A.
Denote by 1(A) the probability that the individual (x; y) transmits the paternal genes

belonging to A and the sncternal genes belonging to A’. There are 1 + m + (7;)
+ .-+ 4+ 1 = 2" such subsets A and accordingly 2™ probabilities [(A) where

(8) (ZA; I(4) = 1.

In accordance with the previously reported observations and with our assump-
tion of equal conditions for both sexes one must assume that

8 I(4) = K4").

The conditions (8) and (8’) reduce the number of freely disposable values of the
I-distribution to (2™' — 1). The Ldistribution is a socalled m-dimensional or
m-variate alternative which could also and occasionally will be denoted by
lle,e,  +,€en) Where e, = Oor 1. Thus e.g.l(1,1,1,0,0,1) is the probability
that the genes y1, ¥2, ¥s, %4, Zs, Ys , are the genes contained in the germ cell of
the individual (z; y). Here the set A consists of the numbers 1,2,3,6, and 4’
of 4,5.
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Analogous to the statements (a), (b), (c) of §2 and (a’), (b’), (c’) of the present
section we may now formulate the principles of Mendel’s theory of heredit; under
the assumption of a possible linkage of the genes:

(a””) With respect to m Mendelian characters an individual is characterized

by two sets of numbers each consisting of m numbers, viz. z; , - - - , Tmand 1,

X

"y Ym, where " = 1,2, ... r If the type of an individual is designated

by (@i, ,Zm;¥1, -+, Ym) = (x; y) where x and y denote the maternal and
paternal contributions respectively, then (r; y) = (y; r). Hence there are
Ny = 3r™(™ 4+ 1) types of individuals.

(b”) = (b’) In the formation of a new individual each parent transmits to
the offspring one set of m genes.

(¢”) For each parent, the 2™ probabilities of transmitting any one of these
2™ possible sets are given by a linkage distribution I(4) where 4 is a subset
of the set S consisting of the m numbers 1, 2, - -- , m, and I(4) is the prob-
ability that the transmitted set consists of the paternal genes belonging to A
and of the maternal genes belonging to A’ = S — A, and I(4) = I(4").

4. Some properties of the linkage distribution and of the crossover probabili-
ties. In the following we shall need marginal distributions, that is partial sums,
of the probabilities within a distribution. In a usual notation:

hix) =22 -+ 2 lxy, 22, -~ s )y e m distributions
z: ‘%3 -
La(@, @0) = D oo Do U1, Tay oo vy Tm)ye e eneennans <;‘) distributions
s .
© hoseom1(Tr, Tgy * ¢ ) Tme1) = ; Wy, oy ooy Tm),ye oo .. m distributions
booom(Zry T2y o0y Zw) =L@, X2y ooy Tn) e the original distribution.

These are general formulae for any discontinuous distribution. But if the dis-
tribution happens to be an alternative, as the 1.d., where z; takes only two values,
any marginal distribution can be completely characterized by two subsets A
and A, of S where 4 D A:. Denote by 1,(A;) the sum of all possible linkage
probabilities which contain all points of A, and no pointof A — A,. If eg.m =8
and A consists of 1,3,5,6 and A, of 1,3,6 then 1,(4;) = s (1,1,0,1) =

> 1A, 2,1,z » 1,0, 27, 2s). According to the previous notation we have

T 21T 4,728

as usual
(10) ls(Al) = l(Al), or ll,2,....m(xl y "%y xﬂ) = l(xl y "0, xm)

and

1,(0) = 1,if A = O is empty.
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We will use for the linkage distribution and their marginal distributions the
customary notations or these new notations, whichever is more convenient.®

As an immediate consequence of our definitions we get the following properties
of the 1.d.

(i) If (8) holds for any A than

(1) li(4)) = (A — Ay).

(ii) As a consequence of (8) it follows (with the notation (9)) that
9) ' L(1) = L(©) = 3.

(iii) If c;; denotes the c.p. between ¢ and j, then
(12) ¢ij = ¢ = 1;;(1,0) + 1;;(0,1) = 21;;(1,0) = 21,;(0,1).

(iv) For any three subscripts 1, j, k the “triangular” relation holds

(13) Cii+ cix = car
and
(14) Cij + Cik -|- Csk é 2.

To prove this consider the marginal distribution I;x(zx;x). From (11) and
(12) we conclude

¢ij = 2[:(100) + 1:2(010)]
ca = 2L:x(100) + 1:%(001)]
cix = 2[L:;#(010) + 1;4#(001)]
1 = 2[L;x(000) + 1;(100) + 1:#%(010) + I;%(001)].

¢ It is easy to indicate experiments which should furnish the relative frequencies corre-
sponding to the 1.d.: If a homozygous female (zy, -+-, Zm; 21, -+, ZTm) is mated to a homo-
zygous male (y1, -+, Ym; Y1, -+, Ym) Where each z; > y; , the resulting offsprings will all
be of type (zi, **+, Zm; Y1, -*+, Ym). If such an offspring is back crossed to (y1, -+, Ym;
Y1, -, Ym) there will be 2™ different genotypes of offsprings, viz. (z,, 22, -+ , Zm; ¥1,
Y2, o0 Ym), (Y1, T2, *, Tm ; Y1, Y2, **, Ynm), etc. whose frequencies are proportional
to the 2™ values of the 1.d., viz. to 1(0, 0, --- , 0), I(1, 0, O, - - - , 0) etc. Such an experiment
should give the same results for any two sets of 2’s and y’s. (There is, of course, the statis-
tical problem how to determine the ““best” values of the l.p. from these observations.)
In an analogous way a marginal distribution can be observed: Suppose we wish for m = 5,
the li2s (&1, 2, &). The offspring of a cross between females (z,, 22, 73, 74, Zs5; 71 , 22, 23,
zi, 73) and males (y1, Y2, ¥s, T4, Ts; Y1, Y2, Y5, Tu, Zs) are of type (Tu, T2, T3, T4, Ts ;
Y1, Y2, Ys, Ta, os). If they are crossed to (z1, -+, @s ; 21, -+, 75) there will be eight
different types of offsprings proportional to the eight values of liz; (e1, €2, €s). In this last
setup the y; should be dominant and in the experiment, described above, the y; should be
recessive in order to be able to distinguish between the phenotypes of the individuals.
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Solving these equations with respect to the l-values we get

1i#(100) = % (ci; + cax — cju)

(15) 1:3(010) = ¥ (ci; + cix — ca)
L:i(001) = % (cax + cjx — Cij)
(16) Li(000) = £ (2 — ¢ij — ca — Cjn).

Thence (13) and (14) follow. The condition (14) is of course always fulfilled
if ¢;; £ 3, but this restriction does not seem to be necessary. From (15) and
(16) we deduce:

(v) If m = 3, the set of three c.p. ci2, Ci3, €23 for which the inequalities (13),
(14) hold s equivalent to the l.d. l(x, , x2 , x3) for which (8) holds. For m = 4 the
c.p. are no longer equivalent to the 1.d. Another necessary condition for the
c.p. will be derived in section 8.

Now let us consider and characterizé some tmportant particular cases of the l.d.

(i) Free assortment (Mendel). In this case all 2™ values of the 1.d are equal
and therefore equal to (3)™.

(ii) Complete linkage (reported by Morgan and other authors). In terms
of the l.d. this means

(17) l(]-’ly T 1:1) = l(O:O: ’O}O) = %Ol‘ lS(S) = %’

Consequently, all other values of the 1.d. are zero. It follows that all c.p. are
zero because all I;; (1,0) are zero. (See also Theorem I, section 7.)

(iii) Linkage groups (Morgan). In terms of the l.d. this means that the l.d.
resolves into a product of several distributions, e.g.
(18) Wy, 22y -+, %) = flar, 22)g(xs, T4, 25)h(Xs , T7, Ts , o).

(There is no loss of generality in assuming that numerically consecutive charac-
ters form a linkage group.) Asf, g, and h are distributions it follows with nota-
tion (9) that “within’’ the groups:

e = 2f(10),  cu = 2gu(10), ---,  cs = 2g4(10),
cor = 2he:(10), -+,  cs9 = 2hg(10)

these crossover values are aquite arbitrary. On the other hand we have because
of (9') )
Ji(1) = f:0) = g,(1) = g;(0) = hi(1) = l(0) = 3,
t=12,7=1,23;k=1,---4)

I

Hence for the c.p. “among” the groups
s = 2-3:-3 =1 etc. Hencecis = cuu = Cp5 = -+- = ¢ = %

in exact accordance with Morgan’s idea of linkage groups. If each group con-
sists of only one element: I(x1, Z2, -+, Tm) = f(@1)g(x2) - - - k(xm) it follows
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that f(z;) = g(x;) = -+ = k(xm) = $ forz; = 0,1, hence l(x1, - -+, Zm) = H)"
for all combinations of the arguments and we have again free assortment.

() Groups of completely linked characters. Combining and generalizing the
ideas of (ii) and (iii) we may speak of 7 groups of completely linked characters if
within such a group no crossover takes place. Then the m; characters in each
group act as one character. An example will suffice. Suppose m = 9 and three
such groups, consisting of the characters 1,2, and 3,4,5, and 6,7,8,9 respec-
tively. Assume that

1(11, 111, 1111) = I(00, 000, 0000) = a, (00, 111,1111) = i(11, 000, 0000) = C;
1(11, 000, 1111) = (00, 111,0000) = C., I(11,111,0000) = (00,00, 1111) = C;

where these four numbers are 0 and with sum 3; hence all other probabilities
are zero. It follows that the c.p. ‘‘within’’ the groups are all zero: ¢;; = ¢ =

- = ¢ = cCyg = -+ = cg = 0, but the “among” c.p. are different from zero,
e.g.C3 = Cuu = Ci5 = Cp3 = Cu = €5 = 2C; + 2C; and, with an obvious notation:
e = 2(C1 + Cy), crur = 2(C1 + C3), errr = 2(Ca + Cy).

A particular case (also a particular case of (iii)) arises if the l.d. resolves into a
product of some distributions such that there is complete linkage in each of these.
The “within” crossovers are then again zero but all the c.p. “among’’ the groups
equal 3.

5. The case m = 2. It will be easier for the reader if this case, though it
has been investigated before by several authors [16), [7], [14], will be presented
by means of explicit computations before attempting the general one where m
and r are arbitrary.

If m = r = 2, the number of types (x:, 22 ; ¥1, ¥2) equals ten. The l.d. is
completely determined by the c.p. ¢i2 = ¢ and v.v., because [(10) = I(01) = ¢/2,
1(00) = 1(11) = (1 — ¢)/2. Now let p™(z;, ;) be the probability that in the
nth generation a male (or female) individual transmits the genes z, , x; ; and de-
note by p{™ (z;) and ps™ (z.) the respective marginal distributions. The formula
corresponding to (4) then becomes

p™(,1) = ™(1,1;1,1) + 3™(1,1;1,2) + $»™@1,1;2,1)

(19) 1—c¢
T

and three analogous formulae. To understand this, consider e.g. the last term
of (19); it is the probability that an individual be of type (1,2;2,1) or (2,1;1,2)
and transmits the set (1,1). By (19) p'™ (21, x2) is deduced from the given
distribution »™ of genotypes.

If, as before, x and y are written for x1 , 2; and y1, y. it is to be understood that
z = ymeans ; = ¥ and 2 = y.. The relation corresponding to (5’) takes
then the form

v™(1,1;2,2) + 507(1,2;2,1),

" y) = pV@pVe) i z=y

(20) n n )
2V (@)™ (y) if z#y.
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Applying (19) to the (n + 1)st generation and using (20) we get the recurrence
formula

"D = PUDE 4+ P07 W,2) + 2™, Dp™(E,1)
+ A = 9p™M,0p™"@,2) + (1,297 2,1).

Here the right side can be rewritten so as to give

(21)

(22) "M, = (1 = p™(1,1) + epi®()pi” (1)
and three analogous formulae. Because of (7):
(22) P (@, 2) = (1 — ¢)p™ @1, 1) + cpi® (21)ps” (x2).

From this recurrence forrula, which has the particularly simple property that
the second term on the right side is independent of =, it is easy to derive step
by step:

@) PP@,m) = (1= @, m) + 1 = (1~ "l @)ps" ().
Hence, if ¢ = 0:
(24) lim ™ (21, 22) = pi°(2)ps” (x2).

The preceding results were obtained by Robbins and Jennings. We will formu-
late a theorem after having studied the general case of arbitrary m and r.

6. The general recurrence formula. Considering random mating and assum-
ing general linkage, we now wish to find the relations which correspond to the
formulae (19)-(22) in the case of m r-valued characters. It will turn out, that,
by using the 1.d., the following proof of the general case becomes surprisingly
simple compared with older investigations of the particular case of free assort-
ment, the values of the 1.d. acting somehow as natural “separators’’ for certain
groups of terms.

Denote by w'™ (@1, -+, Tm; %1, -+, Ym) = w'™(z; y) the probability of a
genotype whose maternal genes are the x and whose paternal genes the y. Then
from (a”):

(25) v?@; y) = wV@; 2.
Writingz = yif and only if ; = y;, (! = 1, - - -, m) we put just as in (2)
v (z;y) = w(; 2), ifz =y

(25")
= w7 y) + 0@ 2) = 07 (5y),  ifr =y

7 A suggestive remark, repeatedly made by Professor S. Wright states that (assuming
random mating) there can be no equilibrium until all of the factors are combined at ran-
dom. This is indeed a necessary condition for stability.
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There are r*™ w-values and 47™(+™ + 1) v-values in each generation the respective
sums being always equal to one. Denote by p™ (1, -, Tm) the probability
that a male (female) individual of the nth generation {ransmits the genes x, and by

p:'n)(xi)y pf;‘)(xl ) xj)’ ) pl(;‘)'-m(xl ] xm) = p(n)(xl y "ty Im)

the corresponding marginal distributions, defined as usual (see (9)). Sometimes
it will be convenient to denote such a marginal distribution by p.(z4) = p.(z)
where A C 8, and p4(2) is the sum of all p(z) such that z; = z; for all 7 ¢ A.
Following convention the subscript will be omitted if A = S; hence ps(z) = p(z)
and if A is empty, 4 = 0, the corresponding po(z) = 1.

To simplify the writing p(z), v(z; y), etc. will be written instead of p‘™ (z),
v (z; y), ete. and p'(z), v'(z; y), ete. for p" ™ (z), ete. Finally, remember that
1(A) is the probability that the paternal genes of A and the maternal genes of
A’ = 8§ — A will be transmitted and accordingly 1.(4,) is the (marginal) prob-
ability that the paternal genes of A; and the maternal genes of A — A; will be
transmitted. (S D A D 4,).

Let us derive p’(z) from p(z). From the meaning of the different distributions
we gather that

(26) p(z) = Zl(A)w(z; y)
where A is an arbitrary subset of S and x and y such that

Yi = 24 for 7¢A4
(@) « 5o

Ti = 2 ted’.
In fact, the set z will be transmitted if and only if an individual possesses these
genes and also transmits them; now consider any I(A) i.e. the probability to
transmit the paternal genes of A; this probability is to be multiplied by all
possible w-probabilities which contain as arguments the paternal genes of A
and the maternal genes of A’, as stated in (a). Now let us write (26) also for
the (n + 1)st generation:

(26") p'(2) = Zl(A)w'(z; y).
Next we have, just as always, [see (5), (20)]

(27) w'(z;y) = w'(y;2) = p()p®).
Hence from (26’) and (27) follows '
(28) p'(2) = ZU(A)p(x)p(y)

with the condition of summation given by (a).

The right side of (28) contains (2r)™ terms. Now we will write it in two
different ways by collecting its terms under two different aspects: (i) arranged
according to the marginal values of the I-distribution (ii) arranged according to
the marginal values of the p-distribution. Let us begin with (i).
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The genes z,, 22, - - - , 2w can be transmitted only by individuals which possess
each z; either before or after the semicolon or both; (either from the mother or
from the father or from both parents). Hence, if A; and A. are two disjoint
subsets of S, the type of such an individual is such that

z: % 2;, yi=2; forall 7eA,
(b) ri=2;, y;#=z; “ ¢ jeds
T = Yr = 2k “ “ keSS — A — A,.

Hence the paternal genes of 4, and the maternal genes of A4, must be transmitted
and for the remaining genes either choice is admissible. Consequently, each
w'(x; y) in (26’)—or, what is the same, each p(z)p(y) in (28)—is multiplied by
the probability that the paternal genes of A, and the maternal genes of A, are
transmitted. Now writing 4; + A, = A this last probability is exactly the
marginal probability [4(4:) = l.(4:). Thence

(29) P'(2) = Zp(x)p(y)la(Ar)

where the sum is extended over all pairs z, y defined by (b). This is a first
recurrence formula. If in (29) w'(z; y) is written instead of p(x)p(y) and then
all accents are omitted we get

(30) p(2) = Zw(z; y)la(4))

with the summation according to (b). This formula is necessary in order to
derive p(z) from the given distribution w(x; y) of genotypes. It corresponds
to (19).

Now let us collect the terms of (28) in the second way. Let us determine
the factor of any I(4) in (28), e.g. of 1(1,1,0,0,0) (where m = 5 and A the sub-
set 1,2). Any factor of I(1,1,0,0,0) must be of the form p(z, 22, -,-,-)
p(-,-,2, 21, 2z5) where all possible values of the variables must be written on
the empty places marked by points, and the sum of all these products is to be
taken. Now, as in each of the two p’s on each of the free places all numbers
between 1 and r have to be used, the sum of all these products resolves into the
product of the respective sums of the p’s. In such a sum each term, on the
places belonging to A contains the same fixed values z, and on the other places
any possible value combination; hence such a sum is precisely the marginal
probability p4(z4) = p4(2) and the same holds for the other sum of the p’s and
for A’ = 8 — A. Thus we get the second, even more important recurrence
formula

(31) p'(e) = ;} UA)pa(2)par(2)

where the sum is over all subsets A of S. This formula corresponds to (22)
and the limit theorem which will be proved in the next section is an almost
immediate consequence of (31). It is worth noticing that the derivations of
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(31) and (29) from (28) are completely independent of each other and that only
(31) is needed for the limit theorem
From (29) and (31) the interesting identity follows

32) (ZA; UA)pa(@)par(2) = Zp(@)p(y)la(Ay)

which somehow reminds us of a general Abel-transformation.
Let us summarize: (i) From a given distribution of genotypes w' (or ‘™)
the p™ are derived by (30). (i) From these p‘™ the w™™*™ follow by (27)

(or v by (25') and (27)). (iii) Instead of step (ii), from p™ the consecutive

p"t p L. 9™ may be derived directly by means of (31). Finally,

if desired, w"*"*™ follows by (27).
As an illustration of these formulae let us write (31) for m = 3,4,5:

P, 22, 2s) = 20(000)p(z1, 22, 23) + U(100)pi” (21)pss(22 , 22)
(31") + 1(010)p5” (z2)pus(#1 , 73)
+ 1(001)ps” (21)pua(z1 , 22)]
P'(@1, 22, 75, 24) = 2(1(0000)p (21, 22 , Ts , T4)
+ 1(1000)p:” (z1)posa(22 , T3, @) + - -
(317) + 1(1100)p1z(x1 , Z2)Psu(zs , 4)
+ 1(1010)pss(21 5 T3)p2u(2 , T4)
+ 1(1001)p1a(21 , Z4)P2s(Z2 , 23))]
P21, T2, T3, X4, Ts) = 2[1(00000)p(zy, -+ ,s5)
(31"") + 1(10000)p:” (x)pasas (s , T3, T4, T5) + -+
+ 1(11000)p1e(z: , x2)paus(zs, x4, x5) + - --].

In the last formula the last group contains ten terms. As an illustration of
(30) we write e.g. form = 3, r = 2, with p” = pand v = v:

P, 22, 3) = 0(T1, T2, T35 T1, T2, X3) + 3[0(@1, T2, 25 ; Y1, 22, 25)
+ o, 22, T 2, Y2, 7)) + -]
+ [h2(00)0(21, 22, 235 91, Y2, )
(30) + Le(00)v(z1, 22, T35 Y1, 22, Ys) + -+ -]
+ U000)v(z1, 22, 23 5 Y1, Y2, Ys)
+ [(100)v(y1 , 72, 73 ; 21, Y2 , Ys)
+ 1010)v(x1, ¥2, T8 5 41, T2, ¥s) + - -]
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7. Limit theorems. In order to find lim p*™(z,, - -+ , Zn) We write the recur-

n-—>00

rence formula (31) in the form
(33) " @) = 2000 --- 0)p (@) = 2 UA)pi” @pi ().
@

Here ' means a sum over all subsets A of S which are neither void nor equal
(4)

to 8. If we write ¢ for the right side of (33) and p™(z) = pi™,

210, --- ,0) = an the last equation takes the form
6 PP~ = g
Consider first the case am = 1, or 1(0, --- ,0) = I(1, ---, 1) = }, i.e. complete

linkage, as defined in section 3. In this case all I(4)-values on the right side
of (33) are zero, hence ¢, = 0 and

(35) 't = pu? (n=01,2"---).

This is exactly the same result as (7): All p&™ are equal to p.’ and because of

(27) also
(36) w™ (@ y) = wP@;y) or vW(y) =@y ¢ =1,2 )

In fact, if the characters are completely linked, they act as one character. Hence
we have

TueoreM 1.  If the m Mendelian characters are completely linked, the distribution
of genotypes reaches the stationary state in the first filial generation.

Now consider (34) in the general case where 0 =< o, < 1. Then the following
lemma will be used: If in a recurrence formula of the form (34), | am| < 1 and

lim ¢\ = qm exists, then lim p.” = pm = g¢m/(1 — an.). This can be proved

directly in various simple ways. It may also be regarded as a consequence of
well-known general convergence theorems. See also [15].

In order to apply the lemma let us first notice that ¢ exists. In fact,
p " (zy, ) — 21(00)p™ (x1, x2) = 21(01)ps® (x:1)p:® (x:) and as the right side
is independent of n, g. certainly exists. Hence, it follows from the lemma that

p2 exists. For m = 3 the recurrence formula (31’) shows that ¢i™ contains no

marginal distribution of p of an order higher than two; therefore each of the
terms of ¢s™ approaches a limit, hence ¢s = lim ¢i™ exists, and consequently,
because of the lemma, p; exists. We may continue in this way because in (33)
all marginal distributions of p on the right side are of an order £ m — 1. Hence
for every m the ¢\ approaches a limit and consequently the lim p%" exists.
Finally, in order to find p. we notice that go = (1 — a2)pi” (z:)ps” (x2), hence
pr = pi¥@)ps¥(x:). Then, assuming that pmy = PiO@) -+ PEA(Tmo)
we see from (33), using (8), that gm = (1 — am)pi” (@) -+ DY (Xm). (See

also (31’) (31”"), (31’”").) Thence .
@37 im p™ @@y, 22, -+, Zm) = PIO@)PE" (@) - -+ DY (@m).
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The last formula contains the limit theorem we wished to prove. It can be
stated as follows:

TaeoreM II. If m characters are arbitrarily linked, with the one exception of
“complete linkage”, the distribution of transmitted genes p™(zy, -+ -, Tm) “con-
verges towards independence.” The limit distribution is the product of the m
marginal distributions of the first order pi®(x:), which are derived from
p @@, -+, zn), the distribution of gametes in the initial generation.

If, however, the initial distribution p®(z, , - - - , Z.) shows particular features,
the stationary state may be reached already for a finite value of ». This happens
with n = 0 and for every 1d. if p®(z1, -+, Zm) = pi”@) -+ P (xm). In
other particular cases it may happen under partlcular assumptxons for the 1.d.

Let us express the general result also in terms of the distribution of geno-
types. It follows from (37) and (27) that

lim w"™(z

n—+c0

;9) = lim ™ (@)p™ (y)

= p"@) -+ pr @)D W) -+ P (Ym) = H P @)p” (w0)].

Now consider a product like p{”(z:)p{”(y;). By definition of p{”(z:) and ap-
plying (27) we find

" @)p” () = 2 o 2 p (@, v, wm) 2 - Z P W, s Ym)
z2 Zm V2
= Z E p“”(x)p“”(y)

T, Y2
Introducing then in a natural way the marginal distnbutlon.
wi (x5 )
38 "
(38) = Z Z w()(xh'”szﬂ;yl:”"yM)
Lt Ti= 1T+ 100 0T Y1 W= 1Y+ 1 m

it is seen that
(39) % @)pi® W) = wi (@ ; yo).
Thence the result

(40) P_{gw‘"’(xl, e Em U, s Ym) = W @) o We (T Ym)
which may be stated as follows:

Tueorem II1. In case of m arbitrarily linked Mendelian characters the dustri-
bution of the genotypes in the nth generation, w™ @y, -+, Tm; Y1, " 5 Ym),
“‘approaches independence” as n — . The limit distribution is the product of
the m marginal distributions w’(x:; y:) of the ith character (i = 1, ---, m)
in the first filial generation.

This theorem, which may be regarded as a corollary to THEOREM 11, holds for
any type of linkage, except ‘‘complete linkage’” as defined in (17) where (36)
is valid.
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8. Solution of the recurrence equations (31). Formula (31) expresses

p™ (1, -+, Zn) in terms of p " (z,, , Tm) (and all margmal distributions
of ) and of the 1.d. It seems des1rable to try to express p'™(z) in terms
of p®(x). Now (31) is not a single equation but rather a complex system of
difference equations with constant coefficients because for each marginal distribu-
tion of order ¢ < m the respective recurrence formula (31) of order 7 has to be
used. (Or, if it is preferred to consider the marginal distributions as sums of
p-values of order m, then all these p-values appear simultaneously and there is
again a complicated system of difference equations.) In this situation it is not
to be expected that the integration will yield simple explicit formulae, partic-
ularly as long as the 1.d. is left arbitrary. However, the construction of the
following formulae is clear. They reduce to simpler expressionsin particular cases.

Let us use a method of indeterminate coefficients. To simplify the writing
denote p®(z, , - - -, z.) and its marginal distributions p% (@), piP (s, ), ete.
by pi.....m , Di, Dij, €tc. From genetical as well as mathematical considerations
we gather the general form of p{;”..,. in terms of pis.... and its marginal distribu-
tions; that this is indeed the general form will be verified by our very computa-
tions. Consider the set S consisting of the m numbers 1, 2, - - - m and divide
S in every possible way in two disjoint parts A, and A,, none of them
being empty, so that A, + A, = S, then divide S in every possible way into
three disjoint parts so that A, + 4; + A3 = S, and finally S is divided into m
disjoint parts each consisting of one single element. Denoting the unknown
coefficients in a corresponding way by ™, @™, , aiv4,.4, , etc. and writing pS”
and ps for pis.... and i .. the general form of ps will be

(n)

Ps = (")Ps+zanuphph+ Z a“l“‘“p“lp“’p‘“
(41) (41,49)

+ o+ s mm1D2Ds D
This holds for every m. We get e.g. form = 4
(41) Pish = a{siipeu + (a{3upipi + s papiss + - )
+ (0!1(;.;.41)12?34 + --) + (al(; ; APupsps + - - )+ Otf;)a AP1D2D3Ps -
For m = 6, eg., there are eleven different types: One term ai{™.epy. s; then
6 t.erms of the form af3. splpz,, s ; 15 terms like o7 3wsprpauss; 10 terms like
aistasePizsPuss ; 15 terms like of3usspipepass ; 60 terms like af3} sseprDospass ;
15 terms like oi734.56D1DsuPss; 20 terms as of3s.ePiP2Pspus; 15 terms as
o$734.5.6D12DsDsPs ; 15 terms as  ofhs.aspipepsPepss ; and one final term
a{.;.)s 14,5,601P2D3P4PsPs -

In (41) the a'® are unknown constants depending on n and on the ld.
In order to find them consider (31) and write for the values of the 1.d. v} instead
of 2I(A) (no confusion is possible because no marginal distribution of the 1.d.
oceurs in (31)). With this notation (31”) e.g. reads:

@17)  piftY = wpif + @lppil + ) + P + o).



44 HILDA GEIRINGER

If there is no ambiguity the upper m in v} may even be omitted. Now assume
the equations (41) to be written for u = 2, u = 3, -- -, u = m. Introduce into
the left side of (31) the expression (41) for ps"*” and in the same way replace on
the right side of (31) all p{™, p{¥, - -+, pir’... by their respective expressions
(41). In this way an equality is obtained from which recurrence formulae for
the unknown coeflicients may be deduced by collecting all groups of terms which
contain the same products of p’s.
If this is carried out, e.g. for m = 4, the recurrence formulae are

(n41) (n)

011;34 = l‘oalznu
(n+1) (n) (n)

aizse = Voisie + Vaizs
(n+1) __ (n) (n) _(n)

(42) ar23s = Vo234 + Vnponz o4 ete.

(n+1) __ (n) (n) (n) (n) (n)

a1234 = Vo234 + Vrpoz 05,4 + Vsaize + Vsaizs

(k1) _ . (m) (m) () ()
1934 = Uod12,34 + Vicesa + ¢ 4 Vpairasy + -

In general, i.e. for any m, these recurrence formulae are of a clear structure the
first one being particularly simple, namely

(43) o™ = ppal™.

It can be solved immediately and gives

(43") as” = .

The other recurrence formulae are all of the form

(44) Tap1 = UoZn + f(n) with 20 = 0,

where f(n) is a given function of n whose general form is still to be investigated.
The solution of (44) is

(44") Ty = Zf(v)v‘;"x".

With the notations used in (41) the equation (44) may be written:
(44") ay;:;l«,»).w.,{“ = Voa.({:.)Az ..... 4, + A;’:,),” ..... 4, -

We have to determine A 4, 4,,....4,. For reasons of symmetry and homogeneity
let us introduce constants ai® = a” = --- = o = 1. With that notation
e.g. the last term in the second line in (42) reads vaiss of™ or the third term to
the right in the fourth line of (42): vsaffias™ ete.

The construction of A}, 4,,....4, may then be described as follows: Each
ALl 45.....4, is a sum of 2*~! — 1 terms, each term being a product of one v-value
and two o’s. The set consisting of the u elements 4,, A,, ---, A, is to be
divided in all possible ways into two non-empty, disjoint, complementary parts
which form the subscripts of the two o’s in question; the subscript of v is equal
to the subscript of either of these two a-values; it makes no difference which,



PROBABILITY THEORY OF LINKAGE 45

because of the specific symmetry (8’) of the 1.d.; it should be noted that in the
subscripts of » no comma occurs. As an example let us write A {734 567, for m = 8.
We get: A{users = vsas™ aistser + Ussraser aizsns + vioaisaters.  Or if we wish
Affdiss for m = 6: Aifdiss = veas” aisdes + vsas iz + vnals asihs +
vuass alrhs + Vst aseh + Viscisaases + Visaisbasis .

Hence, in principle our “integration’ problem, where n is the variable, is
completely solved: First ps™ is given by (41). Then, in order to find any
aﬁ’;?Az,,_,A“ , we first determine the corresponding A4, 4,,...4, by the rule just
explained and illustrated, and then it follows from (44’) that

n—1

(44" @Sty = 2 087 AL s,

This whole procedure, although in principle very simple, may of course be lengthy
if m is not small and if no specific assumption for the 1.d. is considered; for in the
expression of A 4,,4,.....4, many different a-values appear,—each however with less
than m subscripts—which play the role of abbreviations for complicated ex-
pressions; in other words the explicit solution for m = 6, for instance requires
the solutions for m < 6, all these solutions being however completely given by
our formulae, down to m = 2, where of;” and af,';? are given by (23).

Under simple assumptions for the 1.d. the explicit expressions for the a become
simple. Two extreme cases are complete linkage and free assortment. In
the first case p{s’..mn = Pis...m and nothing remains to be done. The case of
free assortment where all v = (3)™" can be dealt with directly by induction, or
we may evaluate the general formulae given above which in this case become
quite simple. We have®

(45) 2™ M ya, = 2"@" = 1) --- (2" — u 4+ 1).

That shows that the values of the coefficients a'”’ depend only on the number of
elements A; which appear as subscripts. Thus we find e.g. for m = 6, if we
write in each line of (45’) one typical value:

alfe = 2"/2% =1/2°

a{.’z'?uae = 01{2'::);456 = aizns),m = (2" - 1)/25"

s a::“ = a::u = alfis = (2" — D@ - 2)/52"'
011.'2‘.3.456 = 0‘1;,34.5.6 = (2" - 1)(2n - 2)(2" - 3)/2 "
aiPias = @ -1@ -2 - (@2 —4/2"
a{Psase = @ -1E" -2 - (2" —5)/2".

Thus in the simple case of independent assortment the explicit solution is very

simple too. It confirms the fact that lim oi%s.056 = 1 while all other o’s approach

n-—+00

8 The values on the right side of (45) are indicated in [1]; but the solution for free assort-
ment reported in this article does not seem to coincide with ours.



46 HILDA GEIRINGER

zero. To prove this, however, without recurring to computations, was the
purpose of the preceding section.

9. Crossover distribution and crossover probabilities. The limit theorem of
§7 as well as the computations of the preceding section, in short, all investiga-
tions and concepts considered so far, are valid for any 1.d. We shall now define
and use a crossover distribution, (c.d.), which is completely equivalent to the 1.d.
but preferable for the study of certain particular cases. Apparently biologists
have not considered the general concept of the c.d. but only the c.p. ¢;; . This
concept is basic and tangible but not sufficient for a complete description of the
linkage mechanism when m = 4, as was seen in the preceding sections.

It is obvious that, from our point of view, a mathematical theory of linkage
must be based on the properties of and a set of assumptions on the 1.d., or the c.d.
The linear theory will be considered from this standpoint. This theory is, of
course, still compatible with a variety of particular assumptions. In the last
section some simple particular cases will be presented and studied with a special
view to tnterference.

The probability that an individual transmits the set of ‘“paternal genes’’ be-
longing to A and the set of ‘““‘maternal genes’’ belonging to A’ = S — A is denoted
by I(A), where I(4) = I(A"); e.g. with m = 8:1(1,0,1,1,1,0,0,1) = [(0,1,0,0,
0,1,1,0). Considering here the succession of arguments we see that in either set
of eight arguments: The first and the second are from different sets, the second
and the third are again from different sets, the third and the fourth are from the
same set, - - - the seventh and eighth are from different sets. Writing 0 for
“same” and 1 for “different” and using these numbers to correspond to the
(m — 1) consecutive intervals between the m genes, we introduce:

1(10111001) + 1(01000110) = (1100101).

Here m(m, 72, ***, 7m-1) Where n; = O or 1, is an (m — 1)-variate alternative.
The relation between the 1.d. and this new distribution may be written in the
form

(46) 2l(er, €, -, em)=7(laa—e|,|e—eal, | en1—€a]|), € =0o0rl.

In this definition no fixed “order” of the genes is implied so far. The numbers
1,2 --- m are used like names.

But it seems to be admitted today by leading biologists that a certain natural
order of the genes exists. If this is so the numbers 1,2, --- m should be used
in agreement with this order. Let us note, however, that the situation is in
reality slightly different: Only the genes within each linkage group (§4) are assumed
to be ordered, whereas no order exists among the groups. Let us for the moment
disregard this circumstance and assume that all genes under consideration
belong to the same linkage group.

Within such a linkage group a one-dimensional or linear order prevails, to be
understood in the geometric sense of “location”. Some more precise definitions
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concerning this linear order will be considered later. For the moment we simply
imagine that each of the two sets of genes belonging to an individual is arranged
like m consecutive discrete points on a line segment.’ The crossover distribution
w(m, n2, * * * Mm—1), introduced in (46) becomes more meaningful under this assump-
tion where, now, the numbering corresponds to this linear order. Then the
argument O in this distribution can be interpreted as “coherence’” and the argu-
ment 1 as ‘“interchange” or ‘‘crossing over’”’ and the “intervals’ as intervals in
the geometric sense. Whether this “‘crossing over”, which means transition
from the maternal to the paternal set or vice versa, is to be conceived as a
“break’’ (Janssen’s chiasmatypie) does not matter for the above definitions.
If however, the idea is that between two neighboring genes not more than one
break is possible then the ‘‘event,” which we call crossover, would be at the
same time a break; if, biologically, more than one break between 7 and (7 + 1)
is not excluded, then the event ‘“‘crossover within (7, ¢ + 1)’ means “odd num-
ber of breaks within this interval.”

Now, let us consider the relation between the c.d. and the c.p. It has Been
repeatedly remarked that the c.p. are not equivalent to the 1.d., hence they are
not equivalent to the c.d. either. There are 1-m(m — 1) c.p. but 2" —1
l-values, or wm-values. If m = 4 the second number is greater than the first.
Besides, the l-values are absolutely arbitrary probabilities. For the c.p. in sec-
tion 4 some restrictions were derived. Let us derive another set of restrictions
by considering four numbers ¢, j, k, [l which we may denote by 1, 2,3,4. (The
following computation has nothing to do with linear order. It appliesif m = 4
to the 1.d. l(eie6se) and if m > 4 to the respective four-dimensional marginal
distributions of the 1.d.) Write v(eeee) = 2l(eeezes) and let us add up the
six ¢.p. corresponding to these four numbers. From ¢;; = 21;;(1,0) = v;;(1,0)
we get

ce + ci3 + - + cau = 3v(1000) 4+ 3v(0100) + 3¢(0010) + 3v(0001)
(47) + 40(1001) + 4v(1010) + 4v(1100)
= 4 — 49(0000) — »(1000) — »(0100) — »(0010) — »(0001) < 4.
Hence as by (14) ci2 + cs + ¢z < 2, it follows that
(14" catcait+ o =2

is another necessary condition for the c.p. The limit “2” can be reached, as we
see for »(0000) = ¢(1000) = »(0100) = »(0010) = »(0001) = O; then

¢z = ¢ = v(1001) 4+ ¢(1010)
¢ = cu = v(1100) 4+ »(1010)
¢3 = cu = v(1001) + ¢(1100)

?““The genes are represented as lying in a line like beads on a string. The numerical data
from crossing over show in fact that this arrangement is the only one that is consistent with
the results obtained” [11]. This is but one of many statements in favor of the linear theory.
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and

Co+ €+ i3 = cuu + o + cu = 2.
To summarize the facts about the c.p.: In case of m characters there are
im(m — 1) c.p. ¢;; = 21;;(10) = 21;; (0,1). These values must satisfy the follow-
ing necessary conditions (besides 0 < ¢;; < 1):

(13) cii + i = ca for any three subscripts
(14) Cij -|— Cjk + Cir _S_ 2 “«© 143 I3 T3
(14") ‘ cat+ci+om £2 “ ¢« four ¢«

If in an analogous way five or more subscripts are considered no new condition
turns up. It has, however, not been proved that the above given necessary
conditions are sufficient for a consistent system of c.p. If we wish to be sure of
consistency the starting point must be a 1.d. or a c.d. from which the ¢;; are
deduced.

[This question of consistency belongs in the same class as the following problem:

“Under what conditions does a set of <72n) distributions V;;(z:, z;) form the mar-

ginal distributions of second order of an m-dimensional distribution V(z,, - - -,
Zm)?”’ Here V(xy, ---, n) is the probability that the first result is < z, the

second < z., the last < z,,. An analogous question arises for the set of (7,;)

distributions Viu(z:, z;, ), ete.]

In the following it will be necessary to know the expressions of the c.p. in terms
of the cd. Put m — 1 = n and denote by p:, p:;, etc. in the usual way the
following probabilities derived from the c.d.: p; is the probability of ‘‘success”
in the s-th trial, p,; the probability of success in both the ¢-th and j-th trial, etc.
It has to be kept in mind that for the c.d. and all magnitudes derived from it the
“s-th trial’’ is associated with the i-th interval, i.e. with the interval (i, 7 + 1)
“and success in the i-th trial” means cross over in this interval. [Whereas in
the 1.d. and in magnitudes derived from it, like ¢;; = Il;; (1, 0) the subscript ¢
denotes the i-th gene. (See (46)).] Now denote by S; the sum of all prob-
abilities p;, by S; the sum of all p;;, - - - . Besides, let Py, .. ;(x) be the probability
of exactly x successes in the first ¢ trials ( = 1,2, ---, n), and analogously,
P;...i(x) the probability of x successes in the j — 1 trials 2,3, --- , j, etc. Then
the desired formulae follow easily: First we have obviously

Ci,itl = Pi =12 ---,mn).

Because c;,i41 is the probability of one interchange between the genes ¢ and
% + 1i.e. of an interchange in the 7-th interval, of ‘“success in the ¢-th trial”’.

1 For one-dimensional distributions V;(z) the question is trivial because any set of m
distributions V:(z) can be considered as the marginal distributions of first order of ¥ (z; .
ey Tm) = V(@) o0 Via(Tm).
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Then c¢; ;42 is the probability of one interchange between i and 7 + 2, i.e. of either
an interchange in the first of the two intervals numbered ¢ and 7 4 1, and no
interchange in the second; or of an interchange in the second but none in the
first. Hence ¢iiy2 = Piipa(1), G =1, ---, n — 1), because P; ;4,(1) is just the
probability of exactly one ‘“success” in the two trials numbered 7 and 7 + 1.
In the same way we get ciiys = Pi..ipa(1) + Pi..i328), G =1, --- ,n — 2),
because an interchange between 7 and 7 + 3 means either exactly one or exactly
three interchanges in the three intermediate intervals. Hence we get altogether,
withn.=m — 1:
Ci,i+1 = Pi

(48) ciiq2 = Piiye(1)
Cim = Pl2...n(1) + P12...n(3) + e Pm...,.(fl), where i=mn if n Oddx
=n — 1if n even.
Let us also express the c;; in terms of the S;. It is well known (see e.g. [3])
that
(49) P... n(x) = Z (_l)v-i-zsy (x = 0, 1, e n).

Applying these to (48) we easily find the convenient expressions:
2 = Py, ete.
ez = (p1 + p2) — 2pe = (S1 — 282)12, ete.

= (1 + P2 + p3) — 2(pr2 + Ps + Pa) + 4P

(50) = (81 — 28: + 4S3)12, etc.
cis = (81 — 28, + 48S; — 8Sp1..4, ete.

C1

=

cim =81 — 28, + 4Ss + -4 (—2)"'3,,._; .

10. The linear theory. Consider a linkage group of size m and assume for the
moment that ¢;; # ci for all 7, j, and k. It seems that the main mathematical
content of the linear theory can be summarized as follows: It is possible to
establish in a unique way an order or a succession of the genes, such that for the

(7;) = rﬂnz;l_) c.p. the (m — 1)(m — 2) inequalities

cij < Ci,j =12 ---,m—2)
(51) j i+l . )~ ’ (i < J)
Cij < Ci1,j =23 --+,m—1)
hold. 1In this succession j will be between 7 and k if ¢ is greater than the two
other c.p. c¢;;and c¢i. The two arrangements 1,2, ---mandm,m — 1, -+,
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- -+ 1 are considered as corresponding to the same order. Furthermore, this order
18 a straight-line-succession for which an additive distance relation holds (cf. also
[4a] and [13]). Instead of the restriction c;; ¥ c it is sufficient to assume
the weaker restriction, that in any triple c;; , ¢ , ¢y j one is greater than the {wo others.
Without such a restriction uniqueness of the order no longer holds. E.g. in
case of independent assortment where all ¢;; equal % any of the m: possible num-
berings of the genes is equally admissible from the point of view of the linear
theory. In the case of complete linkage where all c.p. are zero it will be logical
to consider all m genes as located in the same point. Obviously there are all
kinds of intermediate cases. We shall come back to this point at the end of
this section.

Now consider again the case of “different”’ c.p. (in the above defined sense).
Let us prove that there can be not more than one succession for which (51) holds.
In fact it follows from (51) that also:

(51%) ci; < Cix (=12 ---,m—2) forall k>j

) ] 1< J
and Cij < Cr;j (=23,---,m—1) forall k <.

These are all together M = 2-14+3-2+ --- 4+ (m — 1)(m — 2) = 2(7;)
g") = M/2 “between’’-
relations for m numbers, each of them being defined by two inequalities as
¢i; < ¢ and cjx < ci (if j is between 7 and k); hence on the whole M such in-
equalities. But these are the same as (51’), as we see by changing 7, j, k into
J, k, 7 in the second equation (51’). Thus it is not possible to find two different
successions which both satisfy (51).

As to the metric of the problem, Morgan proposed originally that the value of
the ¢.p. ¢;; should be used as the distance between 7 and j. It has, however
been objected repeatedly that this distance would not be additive; this is ob-
vious since the triangular relation (13) holds for three subscripts (see also
(50)."" The equality c;; + ci = ca holds only in the exceptional cases where
multiple crossingover is excluded. It seems, however that an adequate defini-
tion of distance is available if we try to formulate in terms of probability theory
what the biologist had in mind. Let j = i. The distance d;, ;1 between ¢ and
J + 1 may be defined as the mathematical expectation of the number of crossingovers
in (3, j + 1), ie. in the j + 1 — ¢ intervals between ¢ and j + 1. Hence if

inequalities. On the other hand there are all together (

11 For a geometric equivalent of m points with m(m — 1) /2 arbitrary distances we would
have to turn to an (m — 1)-dimensional space. In fact it is well known that there are
between k points in the plane only S: = 2k — 3 arbitrary distances, in space only S; =
3k — 6, in r-space S, = rk — r (r + 1)/2. Hence for r=m — 1 and k = m: Sp_, =
m(m — 1)/2.
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P;, .. i(x) denotes, as before, the probability of exactly x crossovers in these
( + 1 — 7) intermediate intervals the formula holds

i+1-3
(52) dijp = Z;, zP;...i(x).

Of course, an appropriate unit may be used such that in practical use the distance
becomes proportional to the d;; introduced above.

The mean value to the right in (52) is well known for any distribution
w(x1, - -+, ») whether an “independent” or a general distribution; (i.e. in our
case: with or without “interference’’). Denoting in the usual way by m:(x;)
the marginal distributions of first order of #(z;, - - -, x,) and putting =;(1) =
p: = the probability of success in the ¢-th trial, we get:

(53) dijs1 = pi + Pinn + -+ + p;
and in the same way with £ > j
disrir1 = Djy1+ Pjv2 + -+ + i
dikyr =pit+ pin+ - + ;e
hence d;i ;41 + djs1,641 = diga, or in general:
&4 dij+ du = du G<i<h,

It may be mentioned that the additive property of the mathematical expecta-
tion which was used here is very well known (particularly for independent events)
but not always correctly proved. The proof is contained in the transformation
expressed in the following equalities:

it+1—4

diir = 2. zPs..i(2)
z=0

(55) =2 2 X @t Tt o F I, e, 2)

z{ ZTi+1 zj

=TT Tt mat ot wn,m, T,
zy z2 zp

(For general distributions Stieltjes integrals replace the sums.) In (55)
#(z1, -, z.) is the given n-variate distribution, P;,..,; the probability of
exactly = successes in the successive trials numbered 7, --- ,j and
Tiit1,....§(Zi, -+ x;) is the respective marginal distribution of = (zy, -+ , Zn).
The first equality in (55) is not obvious, while the second is rather trivial. From
the second or third form of d;,;;; in (55), follows (53). The last expression in
(55) shows that the expectation of any such sum as (z; + 241 + --- ;) can be
computed with respect to one and the same distribution =(z;, ---, ).
Therefore the distance d;, ;1 may also be defined as the expectation of (x; + Tiy1 +
-+« + z;) with respect to the c.d.
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Because of the first equation (48) we get from (53)
(63") dij = Ciip1 + Ciyryite+ = + €1,

Hence the distance d; j is equal to the sum of the j — © intermediate c.p. No difficulty
arises for us from the obvious fact that always

(53" ¢i; = d;j; and in general ¢;; < d;;,

because the distance d;; is defined by (52), or (55) and not as c;; .

On the right side in (53’) stands the sum of certain c.p. We have repeatedly
remarked that there may be hitherto unknown restrictions for a consistent sys-
tem of c.p. Hence it is important to notice that there are no restrictions for the
particular (m — 1) c.p. ¢z, C3, *** y Cmo1,m. They can be quite arbitrarily
chosen because of ¢;,i;1 = p;. Hence any geometric. representation of m genes

arranged on a straight line in arbitrary distances d; i1 @0 = 1,2, ---m — 1) is
surely consistent. E.g. m consecutive genes may be arranged with equal distances
dip =dyz= -+ = dpa,m. Orsome distances may be zero; then the respective

genes are localized in the same point, etc.

Finally, let us briefly consider the case of several linkage groups. According
to §4 the 1.d. then resolves into % product of several distributions; e.g. with
m = 12:

l(€1¢2 PR 612) = f1(éxézéséd)fz(656667)f3(€s€o€10)f4(611612)
(56) =(%)‘”l(lel_52!1'52_&’1)'53—54)
1l'2(| € — Gel,léo - €1|) ‘R'4(| €y — 612‘)-

Then, as postulated by Morgan, the linear order holds within each of the k groups,
whereas all c.p. among the groups are equal to .

Let us conclude this section by transforming the basic conditions (51) of the
linear theory by means of (48). This will be needed in the following section.
Consider e.g. the condition ¢;3 < ¢y, i.e.

(57" Pp(l) < Pus(l) + Pus(3)
or cu < ¢y yields Pyg(1) < Pys(1) + Pis(8). Or in the same way:
(57")  Pus(1) + P1s(3) < Puu(l) + Pru(3)
< Py,...5(1) + Pr,...5(3) + Py,...s5(5), ete.

‘

Thus we may express the content of (51) as follows: The probability that the
“event”’ happens an odd number of times in a set T; of 1 consecutive trials is less
than the probability that the event happens an odd number of times in the set T'iyy
or in the set T'.-“ each consisting of © + 1 consecutive trials where T4, and Tin
denotes respectively the sum of T; and either the immediately following or the imme-
diately preceding trial. In this form we see again that the linear theory is an
assumption, suggested by observations, and by no means logically necessary.
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11. Some models of c.d.’s based on the linear theory. The simplest and
very important example which has been suggested repeatedly is that of inde-
pendent crossovers:

(?) Independence. The crossovers do not influence each other, i.e.

(68) Pij = DPiPj,  Pijk = DiDPiDk, "* .

That this distribution is consistent is well known; hence only the specific ine-
qualities (48) or (57) have to be considered. Here the expressions Pi...:(z),
used in (57) become very simple, e.g. with p; + ¢; = 1:

Pral) = pegsgs + @P20sts + 0@Pst + 0igegspe
Then a simple computation shows:
Ciinnt — Cij = (gs — p3) - (g1 — P51)P;
Ciot,j — Cij = Pialgs — Po) -+ (g1 — Pja)-

These differences will be positive if all ¢; — p; > O or all p; < 1. Hence: A
consistent c.d. which fulfils the conditions (51) of the linear theory is the distribution

(59)

of ‘““independent crossovers” with basic probabilities p; = ciip (I =
1,2, .-+ m — 1), with the one restriction
(60) Ciirnn = Pi = 3.

The distribution 1s completely determined by (58). If all p; = p = 1, we have
the particular case of free assortment.

Although this independence is more general than Mendel’s original assump-
tion, Morgan, Haldane and others reported observations, not in accordance
with this hypothesis. One crossingover seems to prevent others in a certain
“neighborhood”. This phenomenon was named inferference. It suggests that
we have to consider the c.d. as a distribution of dependent rather than of in-
dependent events. This will be done in the following pages. First consider
the limit-case of:

(#1) Complete interference or disjoint events. In this case we have

(61) Pij = Pijk = *** = Pu,...om1 = 0.
Thence it follows that we have simply

Cii+1 = Py )
(62) Cii+2 = Pi + Din

Ci,i+3 = Ps + Piy1 + Pise, ete.

In this particular case the c.p. are additive ¢;; = d;;. It is obvious from (62)
that in this case the conditions (51) of the linear theory are fulfilled. On the other
hand it follows from (49), (for x = 0) and (61) that the system s consistent if
and only if

(63) Si=p+p+ - +pa =1 mn=m—1).
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This is in accordance with the fact that nearly or exactly additive c.p. have been
observed always in connection with very small p;-values.

The most striking observation leading to the concept of interference was that
pij S pip;, i.e. that double crossovers appeared less frequently than one would
have assumed for independent crossovers, but that nevertheless they did appear
sometimes. A particularly simple model of dependence or interference which
starts with this fact, preserving however, the main structure of independence, is
the following:

(#47) One-parametric model of partial interference. Assume as before (m — 1)
basic probabilities p; and put
(64) Dij = €DiPj,  Dijk = €PiPiPr, ', etc. 0O=e=x1).
There is independence if ¢ = 1, complete interference for ¢ = 0 and partial
interference for intermediate values of e. Let us first investigate conditions
for the consistency of this distribution. Necessary and sufficient conditions
for a consistent distribution of arbitrarily linked events are well known (see
e.g. [3] (b) p.239). Write m — 1 = n. A system of p;, pij, ***, P1...n iS COD-
sistent if it is possible to compute from these (2" — 1) values, 2" non-negative
values #(m1, n2, - -+ 7a) (9 = 0 or 1) which have the sum one and are given by
the formulae:

m(11l---1) = pra..n
w(ll---10) = Pra...o(net) — P12,...1n

..............................

(65) w(110: - -0) = pr — Z Dizn, + Z 2 Pizang — °*° £ Prz...n
ny ng

-----------------

x(00---0) = 1 — an.+22pu,,., — etk Dins

ny ng

Because of the symmetry of (64) it will be sufficient to check (65) by means of
the relations (49) which can be obtained from (65) by collecting groups of
equations such that the corresponding x(n:, - - - , 9,) show all the same number
of 1’s as arguments. Write P;....(z) = P, for the probability of = successes
in the n trials where independent events with basic probabilities p; are con-
sidered, and P, for the analogous probability corresponding to the distribution
(64) and introduce in the same way S; and S where as before, S; = Zp;;,
S; = Zpiy, ete. We then find:

Po=1—8 + ¢S — eSs + - -
=Po+(1—'€)(—' S2+S3-S4+"')=Po€+(1,— Sl)(l“'é).

It follows that the expression Poe + (1 — S;)(1 — ¢) must be = 0. Fore =0
this condition reduces to (63), whereas for ¢ = 1, there is no restriction at all.
On the other hand this is the only restriction of this kind, because we find

Pi=2S8 —2% + 38 —48. + --- = 8; — 2eS: + 3eS; — 4eS¢ + - -
=P+ (1 — @28 — 38 + 48, -+) = Pie + Si(1 — o).

(66)
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This last expression is always =0 because of P, 2 0, S; 2 0, ¢ < 1. Further-
more we find for ¢ = 2 that P; = Pie, hence always non negative. Therefore
our system is consistent under the one condition (66).

The additional restrictions corresponding to the linear theory have still to be
considered. A simple computation yields the result

Cijo1 — Cij = (1 — 2ep)(1 — 2€piza) -+ (1 — 2epj1)p;

(67)
Ci, i1 — Cisr,i41 = Di(l — 2epit1) - o (1 — 2ep;).

These differences are =0 if p; < 2% which is, for ¢ < 1, less strong than (60).

Hence we sum up: A consistent model of partial interference with one parameter e
to fit the observalions can be obtained on the basis of n = m — 1 prob-
abilities py, Pz, - -+ D» by means of (64), if the condition

€

(68) Poe+ (1 —8)1 —¢€ =0 or S;§l+1_€Po
holds and the additional restriction required by the ‘“linear theory’
1
. < -
(69) Pi S 5

ts satisfied. For ¢ = 1 this reduces to “independent events” or “no interference’’
with no restriction (68), and (69) reducing to (60). For ¢ = 0 our model yields
““complete interference’” or “‘disjoint events” with restriction (68) becoming (63)
and no restriction (69). If we say that this model contains one parameter only,
the idea is that the p; are to be identified with the basic c.p. ¢;i1. It might,
however, seem adequate to consider e and p;, - - , pm-1 as m available param-
eters which may be determined from the observations by some appropriate
method.

() An (m — 1)-parametric model of partial interference. Numerical data
show (see particularly [4]) that interference is particularly markedi.e. p;; < pp;,
if the corresponding p; , p; are very small, whereas for greater values of the p;
we have more nearly the pattern of independence. This is rather a striking
fact, and seems to be well confirmed by observation. In these final pages a
model will be studied which takes into account the circumstance that the amount
of interference seems to depend on the magnitudes of the p;. It contains
(m — 1) parameters, is therefore rather flexible, but nevertheless very simple.

Assume m — 1 = n numbers ¢; where 0 < ¢; < 1 and form by means of n

probabilities p; :
(70) €&Di = Pi 0=e&=1) =12 -, ).
We may choose ¢; small if the corresponding p; is small and larger if it is large;
if the p’s are all of the same order of magnitude the €’s need not differ much
either. Then we simply define:

(71) pij = Pib;, Pije = PiDiDe, * ", P12..n = P12 =+ Pn .
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Let us investigate the consistency of this model. In analogy to (66) we form
with S; = Zp;, S = Zp:, S = Zp:iDj, ete.:
Po=1-8+8 -8+ ---
(72)

(1—SI+S2—S.~,+~--)—ZI(1—e.-)p.-=1"o—Z‘,l(1 — &)ps

where Py and P, are the probabilities for zero successes for the model under
consideration and for independent events with basic probabilities p; respectively;

hence Py = IT (0 — ep.) and we get the condition:
tm=]

(73) 1_]; 11— eap) 2 § (1 — &)pi or: ;P-' s ; pi + I_Il 1 = po).

If:all e; = 1 there is no restriction (73), while for ¢; = 0 we find again (63). The
consideration of Pj, P;, - - - yields no new condition, because we get, denoting
by P, the probability of ¢ successes for the independent events with basic prob-
abilities p; :

Pi=8-258+38—---+n8,=58-28+ - +n8, +'le.'(l — &)
= P, + Z;p.-(l — &) =0 and:

P;=Piz0 (22
As for the restrictions imposed by the linear theory we find:
) i — Cij = (1 — 2p)(1 — 2psa) -+ (1 — 2p,-0)Pp; + pi(l — ¢))
Cijt1 — Civt i1 = Di(l — 2Pi) -+ (1 — 2p;) + pi(l — ).
Thus the conditions of the linear theory are satisfied if

1
26.‘ )

Hence summarizing: On the basis of m — 1 probabilities p; a consistent model of
partial interference is obtained by means of (70) and (71) if the condition of con-
sistency (73) and the conditions (75) are satisfied.

It may be that the four simple models described in this section will seem too
crude for the description of the complex mechanism of linkage. They could,
of course, be combined and modified in various ways in order to serve at least
as an approximation to the theoretical picture of reality we wish to construct.
But, while these particular attempts may be inadequate, it seems to the author
that the underlying principle is not wrong: that a mathematical theory of
linkage must finally consist in statements on the 1.d. (or the equivalent c.d.).
The consideration of the c.p. is not sufficient for this purpose. The mathe-
matical instrument for a theory of linkage seems to be the probability theory of
the linkage distribution.

(75) P S or p; =

(S
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