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NOTE ON A LEMMA

By ABraAHAM WALD

Columbia Universily

In a previous paper on the power function of the analysis of variance test’,
the author stated the following lemma (designated there as Lemma 2):

LEmMMA 2. Let v, - -+, v be k normally and independently distributed variates
with a common variance o°. Denote the mean value of v; by a; i = 1, -+- , k)
and let f(v1, -+, vx, o) be a function  the variables vy, --- , vr and o which
does mot involve the mean values ay, -+, ar. Then, if the expected value of
f@i, -+, v, o) ts equal to zero, f(vi, -+, m, o) s identically equal to zero,
except perhaps on a set of measure zero.

In the paper mentioned above it was intended to state this lemma for bounded
functions f(v1, -+, vx) and the lemma was used there only in a case where
f@:, -+ - ,v) isbounded. Through an oversight this restriction on f(v , - - - , vx)
was not stated explicitly.” The published proof of Lemma 2 is adequate if
f@i, -- -, v) is assumed to be bounded. From the fact that the moments of a
multivariate normal distribution determine uniquely the distribution it is
concluded there that if for any set (ry, - - - , rx) of non-negative integers

+o0 o0 2
(l) [ .. [ vt .- Ulrckf(vl , ,,k)e—;zm—u;) dv, -~ dv, = 0
0

0

identically in the parameters o1, -« -, ap then f(vi, - -+, v;) must be equal to
zero except perhaps on a set of measure zero. This conclusion is obvious if
f:,- -, vx)isbounded. In fact, from (1) and the boundedness of f(v; , - - - , vi)
it follows that there exists a finite value A such that

1 1 T (wi—an?

<P(01, s 7vk) = W[l - Zf(vl, s ’vk)]e BEimes

is a probability density function with moments equal to those of the normal
distribution

I —20iap?

¢(vl,---,vk)=(21—)me .

Hence f(v1 ,.- - - , vx) must be equal to zero except perhaps on a set of measure
zero. However, this conclusion is not so immediate if no restriction is imposed

on f(v, -+, vx) except that
= t= (0 i—ag)?
(2) [ [ |f(v1,"',vk)|e"* (vi—as) vy «--dyy < o

for all values of the parameters oy, -+, ax . It is the purpose of this note to
prove this. In other words, we shall prove the following proposition:

1 A. WaLp, “On the power function of the analysis of variance test,”” Annals of Math.

Stat., Vol. 13 (1942), pp. 434.
2 T wish to thank Prof. J. Neyman for calling my attention to this omission.
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PrepositioN 1. If (2) holds for all values of the parameters oy, --- , oy and
if for any set (ry, - -, r) of non-negative integers equation (1) holds identically
Moy, -, ok, then f(v;, -+, vi) must be equal to zero except perhaps on a set
of measure zero.

On the basis of Proposition I 4nd the arguments given on p. 438 of the paper
mentioned before, it can be seen that restriction (2) on the function f(v; , - - - , v)
is sufficient for the validity of Lemma 2.

To prove Proposition I, we shall first show that the following lemma holds.

Lemma A. If h(v1, - -+, vi) is a probability density function and if

+o0 +o0 8}_}[0;!
®3) [ R, -, o)e*  doy oo dop < o

00

for some & > 0, then the problem of moments is determined for the moments of the
distribution h(vy, - - -, ).

This lemma was proved by G. H. Hardy for k = 1.} I shall prove it for
k> 1. Since

- 82»(; Iv" I )27&

2 (2n) ! < 862 logl

4)

we obtain from (3)
00 400 © 2n 2n

(5) [: e h(vl,~-~,vk)[ZM]dv1-~-dvk<°°.

ne=0 (27&)!
Hence
k
oo o © 627& Z v%n
(6) -[eo ..‘.[n h(vl,...’vk)['g——gé;’T)]dvl...dvk< 2

Denote the 2nth moment of v; by uii . Because of (3) the moments u’ are

k
finite. Furthermore, denote . u$? by As,. I'hen we obtain from (6)
=1

[ 4 6”)2,,
@ 2o <"
From (7) it follows that
. 8 \2n

8) hl‘lins”up @) <1
Hence

. 8™ A2 \1/2n
9) hn’l‘_s‘:lp (—%—7') <1

3 See for instance, SEoHAT and TAMARKIN, ‘“The problem of moments,”” Math. Surveys
No. 1, Amer. Math. Soc., New York, 1943, p. 20.
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Since according to Stirling’s formula
lim (2n)!/(2n)*e¢™*\/4mn = 1

we obtain from (9)

(10) lim sup ;’fﬁl <1
Taking reciprocals we obtain

(11) lim inf 2L’;§ﬁ" >1
or

(12) lim inf MAEn " > "2—8 > 0.

But (12) implies the existence of a positive value p so that

(13) N> B (m=1,2, -, ad inf.)
From (13) it follows that
(14) z: A;'}/%» - o,

Nu=]l

But (14) is Carleman’s sufficient condition for the determinateness of the prob-
lem of moments. Hence Lemma A is proved.
On the basis of Lemma A we can prove Proposition I as follows: From (2)

we obtain
i e ol tZagug |
(15) .[ [ lf(vly"'yvk)le—i Ry o dy, <

for all values oy, ---, ox. Let fi(v) = f(v) for all points v = (v, ---, vp)
for which f(») > 0, and fi(v) = O for all points v for which f(») < 0. Similarly,
let f2(v) = —f(v) for all points v for which f(») < 0, and fa(v) = 0 for all points
v for which f(») > 0. Then fi(v) and f2(v) are non-negative functions and

(16) f@) = filk) — f@).
From (15) it follows that

+00 <00
a7 : _[ o fx(v)e_%z'%”am dvy - do, <

and

+o o0 -
8) [T [ pweieian o <
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Let
(19) i) = fiwe ™ G=12).
Now we shall show that for any positive values 81, -+, 8

“+00 00
(20) ,[ .[ iy, « - v B Gy Ly, < oo

In fact, consider the 2° sets (a1, ---, @) where a; = =1 (@ = 1,---,k).
Denote by R,,...q, the subset of the k-dimensional Cartesian space which con-
sists of all points v = (v, ---, vx) for which v; is either zero or signum »; =
signum a; (z = 1, ---, k). Putting a; = a8:, it follows from (17) and (18)
that

(21) f f;(vl y T vk)031|-1|+-'-+8a|m dyy -+ dy, < oo,
R .ﬂk

e ..

Since (21) holds for any of the 2" sets R.,...q, , equation (20) is proved.
From (1) it follows that

+o0 400
[ [ i, w0 = 5, o o) de - do = 0,

for all non-negative integers 71, -+, . Hence, because of (21) and Lemma A
we see that
(22) f::(vl’ ] Uk) = f;k(vl: ) 1)1;),

except perhaps on a set of measure zero. From (22) it follows that
i, ooy m) = filor, <o+, 00) — falor, -+, m) = 0,
except perhaps on a set of measure zero. Hence Proposition I is proved.
A NOTE ON SKEWNESS AND KURTOSIS
By J. ErnEsT WILKINS, JR.
University of Chicago

It is the purpose of §1 of this paper to prove the following inequality:

1) aZ o+ 1

This inequality seems to have first been stated by Pearson'. The inequality
also follows from a result appearing in the thesis of Vatnsdal. Here we give a
proof based on the theory of quadratic forms which seems to be more direct
and more elementary than either of the previous proofs.

1 ““Mathematical contributions to the theory of evolution, XIX; second supplement to
a memoir on skew variation,’’ Phil. Trans. Roy. Soc. (4), Vol. 216 (1916), p. 432.



