NOTE ON A LEMMA

BY ABRAHAM WALD

Columbia University

In a previous paper on the power function of the analysis of variance test¹, the author stated the following lemma (designated there as Lemma 2):

LEMMA 2. Let v_1, \dots, v_k be k normally and independently distributed variates with a common variance σ^2 . Denote the mean value of v_i by α_i $(i = 1, \dots, k)$ and let $f(v_1, \dots, v_k, \sigma)$ be a function—the variables v_1, \dots, v_k and σ which does not involve the mean values $\alpha_1, \dots, \alpha_k$. Then, if the expected value of $f(v_1, \dots, v_k, \sigma)$ is equal to zero, $f(v_1, \dots, v_k, \sigma)$ is identically equal to zero, except perhaps on a set of measure zero.

In the paper mentioned above it was intended to state this lemma for bounded functions $f(v_1, \dots, v_k)$ and the lemma was used there only in a case where $f(v_1, \dots, v_k)$ is bounded. Through an oversight this restriction on $f(v_1, \dots, v_k)$ was not stated explicitly. The published proof of Lemma 2 is adequate if $f(v_1, \dots, v_k)$ is assumed to be bounded. From the fact that the moments of a multivariate normal distribution determine uniquely the distribution it is concluded there that if for any set (r_1, \dots, r_k) of non-negative integers

$$(1) \qquad \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} v_1^{r_1} \cdots v_k^{r_k} f(v_1, \dots, v_k) e^{-\frac{1}{2} \sum (v_i - \alpha_i)^2} dv_1 \cdots dv_k = 0$$

identically in the parameters $\alpha_1, \dots, \alpha_k$ then $f(v_1, \dots, v_k)$ must be equal to zero except perhaps on a set of measure zero. This conclusion is obvious if $f(v_1, \dots, v_k)$ is bounded. In fact, from (1) and the boundedness of $f(v_1, \dots, v_k)$ it follows that there exists a finite value A such that

$$\varphi(v_1, \dots, v_k) = \frac{1}{(2\pi)^{k/2}} \left[1 - \frac{1}{A} f(v_1, \dots, v_k) \right] e^{-\frac{1}{2} \sum (v_i - \alpha_i)^2}$$

is a probability density function with moments equal to those of the normal distribution

$$\psi(v_1, \dots, v_k) = \frac{1}{(2\pi)^{k/2}} e^{-\frac{1}{2}\sum (v_i - \alpha_i)^2}.$$

Hence $f(v_1, \dots, v_k)$ must be equal to zero except perhaps on a set of measure zero. However, this conclusion is not so immediate if no restriction is imposed on $f(v_1, \dots, v_k)$ except that

(2)
$$\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} |f(v_1, \dots, v_k)| e^{-\frac{1}{2} \sum (v_i - \alpha_i)^2} dv_1 \cdots dv_k < \infty$$

for all values of the parameters $\alpha_1, \dots, \alpha_k$. It is the purpose of this note to prove this. In other words, we shall prove the following proposition:

¹ A. Wald, "On the power function of the analysis of variance test," Annals of Math. Stat., Vol. 13 (1942), pp. 434.

² I wish to thank Prof. J. Neyman for calling my attention to this omission.

PROPOSITION I. If (2) holds for all values of the parameters $\alpha_1, \dots, \alpha_k$ and if for any set (r_1, \dots, r_k) of non-negative integers equation (1) holds identically in $\alpha_1, \dots, \alpha_k$, then $f(v_1, \dots, v_k)$ must be equal to zero except perhaps on a set of measure zero.

On the basis of Proposition I and the arguments given on p. 438 of the paper mentioned before, it can be seen that restriction (2) on the function $f(v_1, \dots, v_k)$ is sufficient for the validity of Lemma 2.

To prove Proposition I, we shall first show that the following lemma holds. Lemma A. If $h(v_1, \dots, v_k)$ is a probability density function and if

(3)
$$\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} h(v_1, \dots, v_k) e^{\frac{\delta \sum_{i} |v_i|}{i}} dv_1 \cdots dv_k < \infty$$

for some $\delta > 0$, then the problem of moments is determined for the moments of the distribution $h(v_1, \dots, v_k)$.

This lemma was proved by G. H. Hardy for k = 1. I shall prove it for k > 1. Since

$$\sum_{n=0}^{\infty} \frac{\delta^{2n} \left(\sum_{i} |v_{i}|\right)^{2n}}{(2n)!} < e^{\delta \sum |v_{i}|}$$

we obtain from (3)

$$(5) \qquad \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} h(v_1, \cdots, v_k) \left[\sum_{n=0}^{\infty} \frac{\delta^{2n}(\sum |v_i|)^{2n}}{(2n)!} \right] dv_1 \cdots dv_k < \infty.$$

Hence

$$(6) \qquad \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} h(v_1, \cdots, v_k) \left[\sum_{n=0}^{\infty} \frac{\delta^{2n} \left(\sum_{i=1}^k v_i^{2n} \right)}{(2n)!} \right] dv_1 \cdots dv_k < \infty.$$

Denote the 2nth moment of v_i by $\mu_{2n}^{(i)}$. Because of (3) the moments $\mu_{2n}^{(i)}$ are finite. Furthermore, denote $\sum_{i=1}^{k} \mu_{2n}^{(i)}$ by λ_{2n} . I'hen we obtain from (6)

$$\sum_{n=0}^{\infty} \frac{\delta^{2n} \lambda_{2n}}{(2n)!} < \infty.$$

From (7) it follows that

(8)
$$\limsup_{n\to\infty} \frac{\delta^{2n}\lambda_{2n}}{(2n)!} < 1.$$

Hence

(9)
$$\lim \sup_{n=\infty} \left(\frac{\delta^{2n}\lambda_{2n}}{(2n)!}\right)^{1/2n} \leq 1.$$

³ See for instance, Shohat and Tamarkin, "The problem of moments," Math. Surveys No. 1, Amer. Math. Soc., New York, 1943, p. 20.

332 A. WALD

Since according to Stirling's formula

$$\lim_{n\to\infty} (2n)!/(2n)^{2n}e^{-2n}\sqrt{4\pi n} = 1$$

we obtain from (9)

$$\lim_{n\to\infty} \sup \frac{\delta \lambda_{2n}^{1/2n}}{2ne^{-1}} \le 1.$$

Taking reciprocals we obtain

(11)
$$\lim_{n\to\infty}\inf\frac{2n\lambda_{2n}^{-1/2n}}{e\delta}\geq 1$$

or

(12)
$$\liminf_{n\to\infty} n\lambda_{2n}^{-1/2n} \geq \frac{e\delta}{2} > 0.$$

But (12) implies the existence of a positive value ρ so that

(13)
$$\lambda_{2n}^{-1/2n} \geq \frac{\rho}{n} \qquad (n = 1, 2, \dots, \text{ad inf.})$$

From (13) it follows that

$$(14) \qquad \qquad \sum_{n=1}^{\infty} \lambda_{2n}^{-1/2n} = \infty.$$

But (14) is Carleman's sufficient condition for the determinateness of the problem of moments. Hence Lemma A is proved.

On the basis of Lemma A we can prove Proposition I as follows: From (2) we obtain

(15)
$$\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} |f(v_1, \dots, v_k)| e^{-\frac{1}{2} \sum v_i^2 + \sum \alpha_i v_i} dv_1 \cdots dv_k < \infty$$

for all values $\alpha_1, \dots, \alpha_k$. Let $f_1(v) = f(v)$ for all points $v = (v_1, \dots, v_k)$ for which $f(v) \geq 0$, and $f_1(v) = 0$ for all points v for which f(v) < 0. Similarly, let $f_2(v) = -f(v)$ for all points v for which $f(v) \leq 0$, and $f_2(v) = 0$ for all points v for which f(v) > 0. Then $f_1(v)$ and $f_2(v)$ are non-negative functions and

(16)
$$f(v) = f_1(v) - f_2(v).$$

From (15) it follows that

(17)
$$\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f_1(v) e^{-\frac{1}{2} \sum v_1^2 + \sum \alpha_i v_i} dv_1 \cdots dv_k < \infty$$

and

(18)
$$\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f_2(v) e^{-\frac{1}{2} \sum_{i} v_i^2 + \sum_{\alpha_i v_i}} dv_1 \cdots dv_k < \infty.$$

Let

(19)
$$f_j^*(v) = f_j(v)e^{-\frac{1}{2}\sum v_i^2} \qquad (j = 1, 2).$$

Now we shall show that for any positive values β_1, \dots, β_k

$$(20) \qquad \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f_i^*(v_1, \cdots, v_k) e^{\beta_1|v_1| + \cdots + \beta_k|v_k|} dv_1 \cdots dv_k < \infty.$$

In fact, consider the 2^k sets (a_1, \dots, a_k) where $a_i = \pm 1$ $(i = 1, \dots, k)$. Denote by $R_{a_1 \dots a_k}$ the subset of the k-dimensional Cartesian space which consists of all points $v = (v_1, \dots, v_k)$ for which v_i is either zero or signum $v_i = \text{signum } a_i$ $(i = 1, \dots, k)$. Putting $\alpha_i = a_i\beta_i$, it follows from (17) and (18) that

(21)
$$\int_{R_{a_1...a_k}} f_i^*(v_1, \dots, v_k) e^{\beta_1|v_1|+\dots+\beta_k|v_k|} dv_1 \dots dv_k < \infty.$$

Since (21) holds for any of the 2^k sets $R_{a_1 ldots a_k}$, equation (20) is proved. From (1) it follows that

$$\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} v_1^{r_1} \cdots v_k^{r_k} [f_1^*(v_1, \cdots, v_k) - f_2^*(v_1, \cdots, v_k)] dv_1 \cdots dv_k = 0,$$

for all non-negative integers r_1 , \cdots , r_k . Hence, because of (21) and Lemma A we see that

$$(22) f_1^*(v_1, \cdots, v_k) = f_2^*(v_1, \cdots, v_k),$$

except perhaps on a set of measure zero. From (22) it follows that

$$f(v_1, \dots, v_k) = f_1(v_1, \dots, v_k) - f_2(v_1, \dots, v_k) = 0,$$

except perhaps on a set of measure zero. Hence Proposition I is proved.

A NOTE ON SKEWNESS AND KURTOSIS

By J. Ernest Wilkins, Jr.

University of Chicago

It is the purpose of \{\}1 of this paper to prove the following inequality:

$$\alpha_4 \ge \alpha_3^2 + 1.$$

This inequality seems to have first been stated by Pearson¹. The inequality also follows from a result appearing in the thesis of Vatnsdal. Here we give a proof based on the theory of quadratic forms which seems to be more direct and more elementary than either of the previous proofs.

[&]quot;Mathematical contributions to the theory of evolution, XIX; second supplement to a memoir on skew variation," Phil. Trans. Roy. Soc. (A), Vol. 216 (1916), p. 432.