SOME IMPROVEMENTS IN WEIGHING AND OTHER EXPERIMENTAL
TECHNIQUES'

By HarorLp HoTELLING
Columbia University

When several quantities are to be ascertained there is frequently an oppor-
tunity to increase the accuracy and reduce the cost by combining suitably in one
experiment what might ordinarily be considered separate operations. The
theory of design of experiments developed as a branch of modern mathematical
statistics, and of which fundamental considerations are set forth in R. A. Fisher’s
book [1], provides many improvements of this kind. Since the main interests
of Fisher and other originators of this theory have been in biology, the applica-
tions so far made have been chiefly biological in character, excepting for certain
economic and social investigations involving stratified sampling. The possi-
bilities of improvement of physical and chemical investigations through designed
experiments based on the theory of statistical inference have scarcely begun to
be explored.

The following example is due to F. Yates [2]. A chemist has seven light ob-
jects to weigh, and the scale also requires a zero correction, so that eight weigh-
ings are necessary. The standard error of each weighing is denoted by o, the
variance therefore by ¢*. Since the weight assigned to each object by customary
techniques is the difference between the reading of the scale when carrying that
object and when empty, the variance of the assigned weight is 2¢%, and its stand-
ard error is o /2.

The improved technique suggested by Yates consists of weighing all seven
objects together, and also weighing them in grcups of three so chosen that each
object is weighed four times altogether, twice with any other object and twice

without it. Calling the readings from the scale %, ---, ys we then have as
equations for determining the unknown weights a, b, -- - , g,
a+b+c+d+et+f+g=mn
a+b+c = Y
a +d+e =Y
a +f+g=wu
b +d +f =Us
b +e +9=1us
c+d +9=u
c +e+f = Ys.

1 Presented at the Wellesley meeting of the Institute of Mathematical Statistics, Aug.
13, 1944.
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Any particular weight is found by adding together the four equations containing
it, subtracting the other four, and dividing by 4. Thus

gttty —ys—y—y —ys
7 .

The variance of a sum of independent observations is the sum of their variances,
as is well known, and the variance of ¢ times an observation is ¢’ times the
variance of that observation. Taking c = % for the first four terms in the expres-
sion for ¢ and ¢ = —} for the others gives for the variance of a by this method
o’/2, which is only one-fourth that for the direct method. The standard error,
or probable error, has been halved. If a degree of accuracy is required calling
for repetition a certain number of times of the weighings by the direct method,
then only one-fourth as many weighings are needed by Yates’ method to procure
the same accuracy in the average.

A further improvement, which does not seem to have been mentioned in the
literature, will be obtained if Yates’ procedure is modified by placing in the other
pan of the scale those of the objects not included in one of his weighings. Calling
the readings in this case z, -+ -, z3, we have

at+btctdtetf+g=a
a+b+c—d—e—f—g=2
a—b—ct+d+e—f—g=2
a—b—c—d—e+f+g=2a
—at+b—ctd—e+f—g=2
—a+b—c—dt+e—f+g=12
—a—bt+ct+d—e—f+g=2%
—a—bt+c—dted+f—9g=2.

From these equations,

_atatatu—un—n—un-—2
= . ,

a

with a like expression for each of the other unknowns. The variance of each
unknown by this method is ¢*/8. The standard error is half that by Yates’
method, or a quarter of its value by the direct method of weighing each object
separately. The number of repetitions required to procure a particular standard
error in the mean is one-sixteenth that by the direct method.

A simpler example illustrating the same point is that of two objects to be
weighed, with a scale already corrected for bias. Again let ¢* be the variance
of an individual weighing. If we weigh the two objects together in one pan of
the scale, and then in opposite pans, we have as equations for the unknown
weights a and b,

a+b=2z, a—b=2,



WEIGHING 299

whence
a= (a1 + 2)/2, b= (2 — 2)/2.

The variances of @ and b by this method are both equal to ¢°/2, half the value
when the two objects are weighed separately. The means found from a number
of pairs of weighings of sums and differences have the same precision as those
found from twice as many pairs of weighings of the objects separately.

Further economies of effort, or gains in accuracy, are possible with larger
numbers of weighings and of objects to be weighed. These improvements can
to some extent be applied also to other types of measurement, as of distances,
since it is sometimes possible to measure the sum of a number of such quantities,
or the difference between two such sums, with approximately the same accuracy
as a single one of them. The outstanding case, however, seems to be that of
weighing on a balance objects light enough so that their aggregate weight is
below the maximum for which the balance was designed, since in this case it is
quite reasonable to assume that the several recorded results all have the same
standard error ¢ and that they are independent.

In what follows, some principles underlying the design of efficient schemes of
this kind will be developed and applied to obtain some additional plans. How-
ever no comprehensive general solution has been reached; this appears to be a
matter for further mathematical research. Also, we leave aside in this paper
the problem of estimating the error variance. All this discussion is based on
the minimization of the actual variance. In order to utilize the results it is
necessary that this variance be either known a priori or estimated from the
residuals from the least-square solution. The latter type of estimate is in some
ways more satisfactory, since it refers to the actual experiment rather than to
some previous experiments which may not have been made under exactly the
same conditions. But in order to have such an estimate it is necessary that the
number of observations exceed the number of unknowns, and desirable that the
excess shall have a large enough value to insure a stable estimate of the error
variance *. The appropriate test for significance, or determination of confidence
limits for the unknowns, must then utilize the Student distribution or its general-
ization, the variance ratio distribution, which take full account of the instability
caused by an inadequate number of degrees of freedom for estimating o.

It is only when ¢ is known exactly apart from the experiment being designed
that the criteria we here consider are exactly applicable. In other cases there
may need to be a balancing, in the design of the experiment, between the de-
siderata of minimum variance and of accurately known variance, with the accu-
racy of this knowledge depending on the number of available degrees of freedom.
A theory of design taking full account of this consideration would require a use
of the power functions of the Student distribution and the variance ratio dis-
tribution, discovered respectively by R. A. Fisher [3] and P. C. Tang [4].

We shall denote by N the number of weighings to be made, and by p the num-
ber of objects to be weighed. In order that it be possible to determine the un-
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known weights from the observations it is necessary that p < N, and if a possible
bias in the scale must be eliminated by means of the same data it is necessary
that p < N — 1. Supposing these conditions to be satisfied, we shall show,
among other things, that the minimum possible variance for one of the un-
knowns is ¢*/N; that the experiment may be arranged so that a selected one of
the unknowns has exactly this minimum variance excepting when ¥ is odd and
a bias must be allowed for also; and that for some, but not all, combinations of
p and N, this minimum variance is attained for all the unknowns simultaneously.
This minimum value ¢*/N is of course equal to the variance of the mean of N
weighings of one object alone, disregarding the rest; but it will be seen below
that by complex experiments of the kind indicated, determinations from the
same number of weighings of the other weights also can at the same time be
made with some finite variance, which may or may not have the minimum value.

The following notation will be used in the proof. Let zix = 1 or —1 if the
ith object is included in the ath weighing by being placed respectively in the
left- or right-hand pan, and let x;, = 0if the 7th object is not included in the ath
weighing. Here 7 = 1,2,---,panda = 1,-:-, N. Let y. be the result
recorded for the ath weighing, let A, be the error in this result, and let b; be the
true weight of the ¢th object, so that we have the N equations

¢)) Tiabt + Taabe + -+ + Tpabp = Ya + Aa,

provided there is no bias, or if by y. we mean the observed weight corrected for
a bias known a priori. Under these conditions the estimate of each of the b.’s
having the properties of zero bias and minimum variance is that provided by
the method of least squares. This statement, which does not depend on any
assumption of a normal or other particular form of distribution of the errors,
has been known long but not widely, since there is an easier derivation of the
method by the application to the normal distribution to the method of maximum
likelihood. Its proof, due originally to Laplace, has appeared in many forms
in the work of Gauss and later authors [5]; the latest version is by the present
writer [6].
Letting S stand for summation over all the N weighings we put

2) aij = STikja, gi = STiYa,
and write the normal equations in the form
Zaib; = gi,
where 2 stands for a sum with respect to j from 1 to p. From the usual theory

of least squares (cf. for example the reference last cited) it is known that the
standard error of the determination of b, from these equations—which is the
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minimum possible standard error of b, for any way of combining the observa-
tions—is ¢ times the square root of A.;/A, where

an Q2 - Qp

Qg Q2 *°° @
4=" |

apt Qp2 *°° Gy

and Ay is the minor of A obtained by deleting the first row and column.

The matrices of A and of Ay, are known to be positive definite or semi-definite.
The semi-definite case is excluded by the consideration that the normal equa-
tions shall actually determine the unknowns. Hence the inverse of the latter
matrix exists and is positive definite. But this inverse, which we may write

dee - d2p
d=}|- - . R
dp - dyp

consists of the coefficients in the identity

i
A/Au = an - y dijanaj .

1, ]

which is obtained by expanding A with reference to its first row and first column.
The positive definite character of d therefore leads to the following

Lemma: If a, -+« , @1p (= Qa1, -+, ay respectively) are free to vary while the
other elements of A remain fized, the maximum value of A/An s an , and 1s attained
when and only when ae = a3 = -+« = ay, = 0.

From this it is evident that the variance of b; , namely ¢*4;/A4, cannot be less
than ¢*/an , and will reach this value only if the experiment is so arranged that
the elements after the first in the first row and column of A are all zero. That
such an arrangement is possible may be seen by a consideration of the matrix

Ty T Tpl

T2 . . . xpz
X =

iy . . xpN

whose elements are restricted to be 1’s, —1’s and 0’s. The condition a; = 0,
by (2), means simply that Sz:.21» = 0, a condition which may be expressed by
saying that the first column of X is orthogonal to the sth column. The condi-
tion that the variance of b, have its minimum value ¢°/ay is thus, according to
the lemma, that the first column of X shall be orthogonal to all the others. The
minimum minimorum of this variance will be reached if the first row of X is
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not only orthogonal to all the others, but consists entirely of 1’s and —1’s, so
that an = N. The value of this minimum minimorum is ¢*/N.

If there is a possible bias b, this procedure needs to be modified by the addition
of by to the left member of (1) and subsequent treatment of this term like the
others, putting 7. = 1 in (2), and modifying X by adjoining a column of 1’s.
The necessary and sufficient condition that the variance of b, shall equal o*/N
is then that the column

n
T2

L)

TN

shall consist entirely of 1’s and —1’s and shall be orthogonal to a column con-
sisting of 1’s, and to all the other columns of X.

If no bias needs to be eliminated the experiment can be arranged so that the
variance of b, is ¢°/N merely by filling up the first column of X with 1’s and
—1’s in any arbitrary manner, and then choosing the later columns so as to be
orthogonal to this first one, and so that all are linearly independent. This can
be accomplished, for example by choosing the first element in all the columns to
be the same as that in the first column; choosing the 7th element in the 7th column
(¢ =23, -+, p) to be the negative of the ith element in the first column; and
making all the other elements of X zero.

When a bias is to be eliminated, so that there is a column of 1’s in X corre-
sponding to by, it is necessary that N be even in order that the column of X
corresponding to b; may consist of 1’s and —1’s in equal numbers, without any
0’s, a condition essential for the orthogonality between these two columns with
the maximum value N for a;; . Supposing N even, let us assign the value 1 to
each of the first N/2 elements of the column corresponding to b, and the value
—1 to the last N/2 elements of this row. The remaining rows of X may then
be filled up by the same method as that indicated above for the case in which
there is no bias. The variance of b, will then take its theoretical minimum
value o*/N.

If N is odd and there is a possible bias, the column of X corresponding to b,
can be filled up with 1’s and —1’s in equal numbers, with a single zero, and the
remaining columns can be made orthogonal to it. The variance of b, in this
case will be o*//(N — 1).

The method suggested above for filling up the later columns of X is convenient
for the proof, but is not usually to be recommended in practice, since other
methods will in all but the simplest cases give smaller standard errors for the
unknowns other than the first. For some values of N and p it is possible to
determine all the unknowns with equal and minimum variance. These are the
cases in which all the columns of X can be made mutually orthogonal and
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without zeros, excepting that the column corresponding to b, may contain some
zeros. Thus for N = 4 the scheme of weighing represented by the matrix

1 1 1 1

1 1 -1 -1
X"1—1 1 -1/

1 -1 -1 1

whose columns are all mutually orthogonal, may be applied to weigh three ob-
jects when there is a possible bias, or four where there is not, with variance
o’/4 for each of the unknowns in either case. The matrix X’X of the normal
equations has the form

4000"
0 4 0 0/.
0040J
000 4

Calling the results of the weighings yo, ¥1, ¥2, ¥s in the case of possible bias we
have for the unknowns the expressions

b= W+ —y:— ys)/4
b= (yo — %1 + yo — ys)/4
bs= (o — 11 — 2 + ¥3)/4.

The complete orthogonality exemplified by this design has several advantages
besides the fact that the variance of each of the unknowns has the same mini-
mum value as if all the weighings were to be devoted to it alone (or half the value
of the variance of this unknown if half the weighings were devoted to it plus
bias and half to determining the bias). The diagonal form of the matrix X’X
means that the labor of solving normal equations, which is sometimes formidable,
is reduced to the trivial task of dividing by N. Also, the diagonal form of this
matrix implies that its inverse is also of diagonal form, from which it follows
that the estimates of the different unknowns are statistically independent. Con-
sequently the variances, or standard errors, of linear functions of the unknowns
are easy to find. Thus the variance of the difference between the estimates of
two of the weights is simply the sum of their variances. But of course if the
main object of the experiment is to determine a particular difference of this
kind, or any other linear function of the weights, a different design should be
sought to minimize the particular variance which is of interest.

In contrast to the satisfactory design possible with four weighings, no complete
orthogonality is possible with six weighings, or with any odd number, if the
number of objects to be weighed is the maximum possible for the number of
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weighings and if each object is actually to enter into each weighing in one pan
or the other. For N = 3 and bias known to be zero consider the scheme

1 1
X=|1 -1],
1 0

which corresponds to weighing two objects, first together in one pan, then in
opposite pans, and then weighing one alone. Calling b, the weight of the object
that has been on the scale through all three weighings and b, the other we have
the estimates

b=+ y2 + ¥5)/3
be = (1 — 42)/2,
with respective variances
7 = ¢*/3, o3 = ¢°/2.

Thus the first weight is determined with the minimum possible variance but the

second is not.
An alternative method of weighing under these same conditions is to weigh
both objects in one pan together twice and to weigh them in opposite pans once.

This gives
1 1
X=|1 1],
1 -1
with the normal equations

3+ b=ty s

bh+3:=n+y—u,
whose solution is

b= () + v + 2y5)/4

bs = (11 + ¥2 — 2us)/4,
and variances

oy = 03 = .

Thus the weights are by this method determined with equal accuracy, which is
better than by the preceding method for one of the objects but worse for the
other. To choose between the two methods it is therefore appropriate to take
into consideration the relative accuracy desired in the weights of the two objects.

Either method is better than weighing the objects separately.
Either of these two X matrices can also be made the basis for weighing a single
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object when the scale is suspected of having a bias. The weight of this object
will be estimated as by, and will have the variance }o° by the first method, or
30" by the second. Thus the second method is distinctly superior in this case.

Orthogonality between columns obviously requires both negative and positive
signs, corresponding to weighings in both pans of the balance. Thus the ex-
perimental designs of maximum efficiency for weighing on a balance are not
available with a spring scale, or in making measurements of any kind in which
it is not possible to arrange that the quantities read off are differences. In such
cases the elements of X are restricted to be 1 or 0. Let us now consider some of
the simplest cases of this kind, assuming for simplicity that ¢ = 1. We shall
deal only with cases in which there is no bias.

For N = 3, p = 2 the simple experiment of weighing one object twice and the
other once yields variances 1 and 1 respectively. All other designs are in this
case less satisfactory, with the possible exception of that specified by

11
X=|10{,
01

with by = (11 + 22 — ¥3)/3 and bye= (g1 — y2 + 2y5)/3 having each the vari-
ance of 2.
For N = 3, p = 3 the most efficient design is given by

110
X=|10 1},
011

with by = (11 + ¥ — ¥s)/2, and b and b; given by cyclic permutation in this
formula. The variance of each unknown is §.
For N = 4, p = 3 a design having an advantage in some situations is that

given by

1
0
X = 1

O bt et
-

(together of course with those obtained by permutations of rows and of columns,
as is to be understood throughout). The normal equations are

by + 2b: + 2bs = y1 + ¥ + ¥
2by + 3by 4 2bs = Y2 + Ys + U
2by + 2by + 3bs = y1 + Ys + Vs -

An expeditious method of solution in this as in many similar cases is to add them
all together and then subtract an appropriate multiple of the sum from each
of the normal equations in turn. The variance of each unknown found by this
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experiment is 5/7 = .714. The simple experiment consisting of weighing one of
the objects twice and the others once each yields variances in one case larger
and in two cases smaller than this.

For N = p = 4 the cyclic arrangement

1110
1101
1 011
0111

leads to variances all equal to 7/9.
For N = 5, p = 2 the most efficient design appears to be

10
01
11
11
11

The variance of each unknown is in this case 1/3.
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