ON CUMULATIVE SUMS OF RANDOM VARIABLES

By ABranaM WALD
Columbia University

1. Ir troduction. Let {z} (i=1,2, ---,adinf.) be asequence of independent
random variables each having the same distribution. Denote by Z; the sum
of the first j elements of the sequence {Z.}, i.e.,

@ Li=a+zn+---+2; (G=12 ---,adinf).

Let a be a given positive constant and b a given negative constant. Denote
by n the smallest positive integer for which Z, lies outside the open interval (b,
a),i.e., Z,is either < bor > a. Obviously nis a random variable. Ifb < Z; <
afori =1,2, ---,adinf., we shall say that n = «.

For any relation R we shall denote the probability that R holds by P(R).
It will be shown later that P(n = «) = 0, provided the variance of z; is positive.

In this paper we shall deal with the problem of obtaining the value of P(Z, >
a)' and that of finding the probability distribution of n.

The study of such cumulative sums is of interest in various statistical prob-
lems. For example, a multiple sampling scheme proposed recently by Walter
Bartky® makes use of such cumulative sums.

Cumulative sums also play an important role in the theory of the random
walk of interest in physics. The results obtained in this paper may have bear-
ing particularly on the theory of the random walk with absorbing barriers. In
the presence of an absorbing wall the random walk stops whenever the particle
arrives at the wall, i.e., whenever the cumulative sum of the displacements
reaches a certain value.’

2. Two Lemmas. Lemwma 1. If the variance of z; is not zero, P(n = ») = (.
ProoF: Let ¢ = |a|+ |b|. If » = = then for any positive integer r the
following inequalities must hold

(k+1)r 2
(2 ( >, z() <d (k=0,1,2, ---, ad inf.).

fa=kr+1

To prove P(n = «) = 0, it is sufficient to show that the probability is zero that
(2) holds for all integer values of k. Since the variance of z; is not zero, the ex-

1 Since P(n = ») =0, wehave P(Z, £ b) =1 — P(Z, = a).

2 ‘“Multiple sampling with constant probability’’, Annals of Math. Stat., Vol. 14 (1943),
pp. 363-377.

3 See in this connection 8. Chandrasekhar, ‘“Stochastic problems in physics and astron-
omy”’, Rev. of Modern Physics, Vol. 15 (1943), p. 5.
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i 2
pected value of (Z z;) converges to « as j — «. Hence there exists a positive
fm=]

integer r such that

®) P I:(}__‘i z;)2 < c“’] <1

From (3) it follows that the probability that (2) is fulfilled for all values of k& is
equal to zero. Hence P(n = «) = 0 and Lemma 1 is proved.
LEmMMA 2. Let z be a random variable such that the following four conditions are

Sulfilled:

Condition I. Both the expected value Ez of z and the variance of z exist and are
unequal to zero.

Condition II. There exists a positive § such that P(e* <1 — 8) > 0 and P(e’ >
1438 >0.

Condition III. For any real value h the expected value E¢™* = g(h) exists.
Condition IV. The first two derivatives of the funetion g(h) exist and may be
obtained by differentiation under the integral sign, i.e.,
g (h) = dih Ee* = Ez,
and
g"(h) = & g — B
dh? ’

Then there exists one and only one real value hy 7~ 0 such that

Ed™* = 1.

Proor: For any positive & we have
@ gh) > P(e* > 1+ 8)(1 + 9"
Hence, since P(e" > 1 + 8) > 0,
(5) lim g(h) = +=.
Similarly we see that for any negative h
(6) g(h) > P(e" < 1 —8)(1 — 8.
Hence, since P(e* < 1 — §) > 0, we have
@ Jim g(h) = +e.

Since ¢”’(h) = EZ%¢"* it follows easily from Condition II that
8 g"(h) >0,
for all real values of A.
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The relations (5), (7) and (8) imply that there exists exactly one real value
h* for which g(h) takes its minimum value. Since ¢’(0) = Ez is unequal to zero
by Condition I, we see that h* > 0 and g(h*) < ¢g(0) = 1. It is clear that the
function g(h) is .nonotonically decreasing in the strict sense over the interval
(— =, h*), and is monotonically increasing in the strict sense over the interval
(h*, + ). Since g(0) = 1 and g(h*) < 1, there exists exactly one real value
ho # 0 such that g(hy) = 1. Hence Lemma 2 is proved.

3. A fundamental identity. Denote by z a random variable whose distribu-
tion is equal to the common distribution of 2z;(t = 1, 2, --- , ad inf.). Let D’
be the subset of the complex plane such that Ee* = (t) exists and is finite for
any point ¢ in D’. Consider the following identity

©) e Hav-i0t — Bt = oI,

where N denotes a positive integer. Let Py be the probability that n < N.
For any random variable u denote by Ex(u) the conditional expected value of
u under the restriction that n < N, and by Exy(u) the conditional expected

value of % under the restriction that » > N. Then identity (9) can be written as
(10) PyEye™ @820t L (1 _ PO Ene®™* = [p@)]".

Since in the subpopulation defined by any fixed n < N the expression Zy —
Z, i8 independent of Z,, we have

(11) Ene® et — B o)™
From (10) and (11) we obtain the identity
(12) PyEn{e™[o(®)]""} + (1 — Py)Exe™* = [o@)]".

Dividing both sides by [¢(#)]" we obtain
Eye*Y
Int —n - N—__ =
(13) PyEx{e™[e®)]™} + (1 — Pw) o @O
Let D" be the subset of the complex plane in which | ¢(¢) | > 1 and denote by
D the common part of the subsets D’ and D”. Since lim (1 — Py) = 0,

Nmeo

and since | Ex(e®") | is a bounded function of N, we have in D
14) lim (1 — Py) Zne™

m — — ==

Neo Y Te®F

Since
}’;112 PNEN{C’»‘[‘p(t)]"”} — E{e"“[‘P(t)—n* ,

we obtain from (13) and (14) the fundamental identity
(15) E{e™ o)™} =1,
for any point ¢ in the set D.
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4. Derivation of the probability that Z, > a. In what follows in this and the
subsequent sections we shall always assume that the random variable z satisfies
the conditions I-IV of Lemma 2, even if this is not stated explicitly. Since it
follows from Condition III that the set D’ is the whole complex plane, we see
that the identity (15) must hold for all points ¢ for which | (f) | > 1.

Let hy 5 0 be the real value for which ¢(hy) = 1. Substituting hq for ¢ in (15)
we obtain

(16) Ee®™ = 1,
Let E, be the conditional expected value of e%**® under the restriction that

Z, > a and let E, be the conditional expected value of e*** under the restriction
that Z, < b. Furthermore denote P(Z, > a) by «. Then it follows from (16)

an aE; + (1 — a)Ey =1
Hence
_ 1 —E
(18) a = I _E,
If h > O then E; > 1 and E; < 1. Hence (18) implies the inequality
1 1
(19) aSE—HSeﬂ,—o, (ho > 0).

If ho < O then E; < 1and E, > 1. Hence (18) implies the inequality

(20) l—aS—I—;—;S;bih, (ho < 0).

We shall now derive lower and upper limits for E, and E;. We derive these
limits under the assumption that ip > 0. To obtain a lower limit of £, consider
a real variable ¢ which is restricted to values > 1. For any random variable %
and any relation R we shall denote by E(u | R) the conditional expected value
of u under the restriction that R holds. Denote by P(¢) the probability that
"%t < re®™  Then we have

" 1
= Mo g| & | e < - [YdP().
(21) E, f1 {;e E[e | < r]} ©
Hence a lower bound of E, is given by
(22) Ey = ™ {g.l.b. ¢E (e""‘ | ' < 21._)},
t

where the symbol g.Lb. stands for greatest lower bound with respect to {. Since
¢

¢* is an upper bound of E,, we obtain the limits

(23) e {g.lr.b. ¢E (e"°' | e < s%)} < E <L (ko > 0).
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Let p be a real ariable restricted to values > 0 and < 1. Denote by Q(p)
the probability that €"%*~! < pe™. Then similarly to (21) we obtain

(24) B[ {peWE (e e f,)} Q).

Hence an upper bound of E, is given by

(25) “"“{lub pE( por | ghos > %)}

Since ¢*° is a lower bound of E; , we obtain the following limits for E,
(26) ™ < By < o™ {l..u.b. pE(e"°' | o > %)} (ho > 0).
14

In a similar way upper and lower limits can be derived for E, and E; when hy <
0. With the help of these limits upper and lower limits for « can be derived on
the basis of equation [18). If hy > O then E; > 1, E, < 1 and consequently
the right. hand side of (18) is a monotonically decreasing function of E, and E; .
Hence if E; is a lower, and EY is an upper bound of E;(i = 0, 1), then
— E; 1 — E
(27) E,u E; feaXZ El E;
In a similar way limits for « can be obtained when hy < 0. If both the absolute
value of Ez and the variance of z are small, E, and E; will be nearly equal to
e™ and €™, respectively. Hence, in this case a good approximation to « is
given by the expression

(ko > 0).

1 = o

P

(28) a = — M
The difference @ — « approaches zero if both the mean and standard deviation
of z converge to zero.

6. The characteristic function of n. Let Z, be a random variable defined as
follows: Z, = aif Z, > aand Z, = bif Z, < b. Denote the difference Z, — Z,
by e. Then ¢is a random varigble.

In what follows we shall neglect ¢ i.e., we shall substitute O for e. No error
is committed by doing so in the special case when z can take only two values d
and —d and the ratios a/d and b/d are integers, since in this case ¢ is exactly zero.
Apart from this special case the variate e will not be identical with the constant
zero. However, the smaller the values | Ez | and E7*, the smaller the error we
commit by neglecting e. In fact, for arbitrary small positive numbers §; and &,
the inequality p(| e| < &) > 1 — & will hold if | Ez | and EZ* are sufficiently
small. Thus in the limiting case when Ez and E2’ approach zero the random
variable ¢ reduces to the constant zero.
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(a). The characteristic function of n when only one of the quantities a and b s finite.
It will be sufficient to treat the case when a is finite and b = — . In this case
n is defined as the smallest positive integer for which Z, > a. To make the
probability of the existence of such a value n to be equal to 1 we have to assume
that the expected value p of z is positive. Since b = — o, the fundamental
identity (15) need not hold for all points ¢ of the set D. However, it follows
easily from (13) that (15) holds for all points ¢ in D whose real part is non-nega-
tive. Denote by ¥(7) the characteristic function of n (r is a purely imaginary
variable). Since Z, = a (neglecting ¢), and

Ele(®]™" = ¢[— log ¢(®)],
identity (15) can be written as
(29) eY[— log ()] = 1.
Let t(7) denote a root (with non-negative real part) of the equation in ¢
(30) log o(¢) + 7 =0,
and substitute ¢(7) for ¢ in (29). Then we obtain
(3D W) = e,
As an illustration let us calculate ¥(7) in the case when z is normally dis-

tributed. In this case

log () = ut + i‘; £,

where u is the mean and ¢ is the standard deviation of z. Hence

o+ F T
i(r) = s .

(32)

If we take the 4 sign before the square root sign, the real part of ¢(r) is non-
negative, since the real part of 4/u? — 20?7 is greater than or equal to . Hence
the .characteristic function of n is given by

(33) W(r) = etV &> 0).
(b). The characteristic function of n when a and b both are finite. Given the value
of n, let p, be the conditional probability that Z, = a. Let p) denote the prob-

ability that n is the smallest positive integer for which either Z, = aor Z, = b
holds. Neglecting Z, — Z,, identity (15) can be written as

(34 3 oo + (1 = POk = 1.

Let ¢1(7) be the characteristic function of n in the subpopulation where Z, = a,
and let ¥2(7) be the characteristic function of 7 in the subpopulation where Z, =
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b. Furthermore let y(r) be the characteristic function of n in the total popu-
lation.
Since we neglect the difference Z, — Z. , it follows from (18) that the prob-
ability « that Z, = a is given by
1 —¢™
(35) &= e
Putting 1 — p, = ¢, the following relations hold

A DnDn [(’(t)]_ﬂ _ E Dn p: [¢(t)]—n

(89) ¥il—log (9)] = *= S5 .

* —n * —n
(37) hl—tog )] = ZLLOIT_ T aupileld]
g V171801 = ZAMOT" = Zeont alol0]"

= afs[—log ()] + (1 — a)ya[—log o(t)].
Putting —loge () = 7 we obtain from (34), (36) and (37)
39) api(r)e” 4+ (1 — ala(r)e™ = 1.

According to Lemma 2 the equation —log ¢(f) = 0 has two different real roots
int,t = 0and ¢ = ko, and ¢’(0) and ¢’(he} both are unequal to zero. Hence, if
#(t) is not singular at { = 0 and ¢t = hy, the equation

~loge(t) = 7,
has two roots (1() and #(7) for sufficiently small values of 7 such that lim #(r)
To()
= 0 and lim #(r) = ho. Since the identity (15) holds for all values of ¢ for

Te=(

which | () | > 1, and since | o[ti(7)] | = | ¢lt2(7)] | = 1 for all imaginary values
of 7, it follows from (39) that both equations hold

(39) (DD + (1 = aWa(r)e™® = 1,

(39") (D + (1 = apa(r)e™® = 1.

Solving these two linear equations we obtain y4(7) and y»(7). The character-
istic function y(7) is given by

¥(7) = aga(r) + (1 — a)gelr).
As an illustration we shall determine y,(7), ¥2(7) and ¢(7) when z has a normal

distribution with mean x and standard deviation ¢. We have

2
4%do=—m-gf=ﬁ
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Hence

“) ,_ ek VE— %
z .

Putting ¢ = A4 and ¢ = B we obtain from (39) and (40)
(41) ai(7) A—»let+1/et/ui=202r + @ - a)a(r) B-#let+1/erVui=20tr = 1
(42) wi(r) A—plet—1/e3/ui—2q37 + - a)%(.,.) B-#lo2=1/e2/p1<20%7 _ ],

These two equations are valid for any imaginary value of ». Since hy = :,?f’
we obtain from (35)
1 —_— B-g“/'2
(43) &= e grwie
Let
1

4 91=—£2+;2Vﬂ2—2°37’
and

Bl s
(45) gz = —;z—;z‘\/pz—zaz‘r.

Then we obtain from (41) and (42)

B2 — B%
(46) aya(r) = A1 B9 — gesgn’
and
7) (1 = aa(r) = o — 4"

A9 B2 _ 4oz BNt °
Hence the characteristic function of n is given by

A% + B — A9 — B
A9 B2 — 492 g0

(48) ¥(ry =

6. The distribution of n when z is normally distributed. (a) The case when

a 18 finite and b = — . In this case the characteristic function of # is given
by (33). Let
. 2
=K
(49) m=gz —

Then the characteristic function of m is given by
(50) () = ecti-vi-,
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where
_ o
(51) ¢=— > 0.
The distribution of m is given by
1 ™ aev/ichme
(52) 3ms e dt.
Let
(53) Gle, m) = 5:_1 [ ¢V gy
and
(54) H(c, m) = _1~ ['w L evimin gy
2m Liw V1 — ¢ :
Since
1 d —c\/lTl-mt - 1 ¢ — —-c\/I:-nt
(55) o a1 © = omi (2\/"1—: i '”) ¢
we have
C .. _ _ 1 —cy/T=t—mt fo
(56) —2‘ H(C, m) mG(c, m) = -27‘; [e ]-—sao = 0.
From (53) and (54) we obtain
o0H (c, m)

(87) + G(c, m) = 0.
From (56) and (57) it follows that

c 0H(c, m) _
(58) EH(C, m) + m T —-/0.
Hence

2

(59) log H(e, m) = .~ + log A(m)

where A(m) is some function of m only. Thus
(60) H(c, m) = A(m)e~**/"

Now we shall determine A\(m). We have

(61) A(m) = H(O, m) = Qlfri[m \/11__ te'”" dt.

291



292 ABRAHAM WALD

Since (1 — ¢)™% is the characteristic function of 3x* where x* has the x’-distribu-
tion with one degree of freedom, the right hand side of (61) is equal to

OV
Hence
(62) A = T
From (60) and (61) we obtain
(63) Hem = s
From (56) and (63) we obtain
(64) Gle,m) = EF(fW etin

Hence the distribution of m is given by

(65) F (m) dm = m‘%ﬁz e—c’/!m—m+c dm, (0 S m < ).

Let m = % m*. Then the distribution of m* is given by

/2 gD AmAm=D) g

" D(m*) dm* = - (%) ( %)m —

— _\/ c —(c/)Um*+me=2) J %

‘\/21'(7”*)3/2
The function ;nl_* + m* — 2is non-negative and is equal to zero only when m* = 1.
If ¢ is large, then D(m*) is exceedingly small for values of m* not close to 1.

Expanding ;nl—* + m* — 2 in a Taylor series around m* = 1, we obtain

(67) ;nl—* + m* — 2 = (m* — 1)’ + higher order terms.
Hence for large c
Ve —emme-n
68 D(m*) dm* ~ —=¢"° dm*,
@) () dm* ~ V2

i.e., if c is large m* is nearly normally distributed with mean equal to 1 and

NP 3
standard deviation Ve
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(b). The case when a and b both are finite. In this case the characteristic funetion
of n is given by (48). Let

2
m = Zc-“ n and d=—
Then the characteristic function of m is given by

AM + B** — 4™ — BM

QUi

(69) lﬁ*(t) = Ahl th — AMBM )
where ,

and ¢ is an imaginary variable. Putting Ad =A,B'=B,da=aand db = b,
the characteristic function of m can be written as
* t _ A(e*-a 1~ el-l‘\/l:) + B(e&\/‘l:; —_— 6—8‘\/]:)
v = AB(e®aVimt — (G-hvim)
A(e-wr — e(28-0)V1-t 1) 4 B(ea 1=t — g(@~25)4/17¢ )
ABQ1 — @b Vi)

(71)

It will be sufficient to consider only the case wheq > 0, since the case < 0 can
be treated in a similar way. Then ¢ < 0 and b > 0. Since the real part of
+4+4/1 = ¢ is greater than or equal to one, we have

(72) | e2a-hvi=t | < 1,

for any imaginary value of {. Let

(73) T = e2&-bVi—,

Then

(74) —;r
’-

From (71) and (74) it follows that nlz*(t) can be written in the form of an infinite
series.

(75) 'p*(t) = il r..e—).“\/l:t‘,

where \; and r; are constants and A\; > 0. Each term of this series is a character-
istic function of the form given in (50) except for a proportionality factor. Let
Fi(m) be the distribution of m corresponding to the characteristic function
@—V1=,  Then F;(m) can be obtained from (65) by substituting A;forc. Since
we may integrate the right hand side member of (75) term by term, the dis-
tribution of m is given by

(76) F(m) dm = (i; o F.-(m)) dm.
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Since m is a discrete variable, it may seem paradoxical that we obtained a
probability density function for m. However, the explanation lies in the fact
that we neglected e = Z, — Z, and this quantity is zero only in the limiting case
when u and ¢ approach zero.

If | u | and o are sufficiently small as compared with ¢ and | b |, the distribu-
tion of m given in (76) will be a good approximation to the exact distribution of
m, even if z is not normally distributed. The reason for this can be indicated
as follows: Let

ir
" Zd= Y oz (G=12, ---,adinf)
jm(s=1)r+1

where r is a given positive integer. Since the variates z; are independently dis-
tributed each having the same distribution, under some weak conditions the
variates z: (6 = 1,2, - - - , ad inf.) will be nearly normally distributed for large r.
Hence, considering the cumulative sums Z T=a4a+- - +2iG=12 -,
ad inf.), the distribution given in (76) is applicable with good approximation,
provided that r |u| and 4/7¢ are small as compared with a and |b| so that the
difference ¢* = Z+ — Z» can be neglected.

7. The exact probability distribution of Z, and the exact characteristic func-
tion of » when z can take only integral multiples of a given constant d. In the
previous sections we derived the probability P(Z, > @) and the characteristic
function of » under the assumption that the quantity by which Z, may differ
from @ or b is small and can be neglected. This can be done whenever | Ez |
and EZ* are small. However, if | Ez | or EZ* is not small, it is desirable to derive
the exact probability distribution of Z, and the exact characteristic function of
n. Both are obtained in the present section for random variables z which can
take only a finite number of integral multiples of a given constant d. This is a
rather general result, since any distribution of z can be approximated arbitrarily
fine by a discrete distribution of the above type if the constant d is chosen suf-
ficiently small.

There is no loss of generality in assuming that d = 1, since the quantity d
can be chosen as the unit of measurement. Thus, we shall assume that z takes
only a finite number of integral values. Let g1 and g be two positive integers
such that P(z = —g,) and P(z = ¢») are positive and z can take only integral
values > —g; and < go. Denote P(z = 1) by hi;. Then the characteristic
function of z is given by

(78) o(t) = f) hie".

To obtain the roots of the equation ¢(f) = 1, we put ¢ = u and solve the equa-
tion

(79) > hu' = 1.
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Denote g1 + g2 by g and let the g roots of (79) be u, - - - , Uy, respectively. We
shall assume that no two roots are equal, i.e., u; ¢ u; for ¢ ¢ j. Substituting
u; for ¢’ in the identity (15) we obtain

(80) E@ui) =1 G=1-,9.

Denote by [a] the smallest integer > @, and by [b] the largest integer < b. Then
Z, can take only the values

(81) [b]_gl+1: [b]—gl+2’°")[b])[a]7 [a]+1)""[a]+92—1'
Denote the g different integers in (81) by a, - -+, ¢,, respectively. Further-
more, denote P(Z, = ¢;) by £ . Then equations (80) can be written as
g
(82) 2 kil =1 @=1-:-,9.
'-

Let A be the determinant value of the matrix || ui || (5,5 = 1, -+, g) and let
A; be the determinant we obtain from A by substituting 1 for the elements in
the jth column. If A »¢ 0, it follows from (82) that P(Z, = ¢;) = £pis given by

(83) b=

Hence, P(Z, > a) = E (A;/A) summed for all values of j for which ¢; 2> a.

1
From the probability distribution of Z, we can easily derive the expected value
En of n. In fact, differentiating the fundamental identity (15) with respect to
tat t = 0 we obtain

_ﬂ9]=
(84) E[Z,. 2(0) n 0.
Since %,(%) = Ez, we obtain from (84)

(85) En = EZ, 1 c,-A,

‘Ez = Ez =1 A’

Now we shall derive the exact characteristic function of n. Denote by
¥i(7) (7 is a purely imaginary variable) the characteristic function of the condi-
tional distribution of n under the restriction that Z, = ¢;. Let ti(7), - -« , {,(7)
be g roots of the equation

(86) o(t) = ¢,
such that
(87) lin: e = .

Substituting ¢;(7) for ¢ in the fundamental identity (15) we obtain
g

(88) 2 £ gy() = 1 =1, 0.
Jum
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These equations are linear in the unknowns ¢y(7), -, ¥»(r) and the deter-
minant of these equations is given by
Elecltl(r) v cgty(r)

Elecltg('r) e Evec,tg(r)
(89) 8r) = .

Elecu,(f) v Eaec,t,(r)

Obviously, 6(0) = &5 --- §A. Henceif & = 0 (¢ = 1,---,¢g) and A » 0,
also 6(0) > 0 and consequently §(r) > 0 for any r with sufficiently small absolute
value. Thus, ¢4(7), « -+, ¥,(7) can be obtained by solving the linear equations
(88). The characteristic function ¢(r) of the unconditional distribution of =

is given by

(90) V) = 3 k).



