ON A TEST FOR RANDOMNESS BASED ON SIGNS OF DIFFERENCES'

By Henry B. MaNN
Ohio State-University

1. Introduction. It has been pointed out by J. Wolfowitz [1] that we cannot
expect a test for randomness to be most powerful with respect to every possible
alternative. It is therefore necessary to find tests designed to distinguish a
random sample of observations from the same population from a sample coming
from some particular class @ of distributions. Such a test need be consistent
in the sense of Wald and Wolfowitz [2] only with respect to alternatives in the
class Q.

Let z1, -+, z, be the measurable quality characteristics of n units of a
manufactured article. We shall assume that the distribution of z; is continuous.
According to Shewhart the production process is termed ‘under statistical
control” if z;, -+, z, can be regarded as a random sample of n independent
items each coming from the same population with known or unknown distribu-
tion function.

In a random sample p; = p(z; > z;11) = 3, where P(E) denotes the prob-
ability that E will hold. The class  of alternatives which we shall consider is
described as follows. The cumulative distribution of z; is f; and the f;, ¢ =
1, 2, .-+, are such that

p;=%+ég, Z‘€;=An(n'—1), liminf)\,.=)\>0.
Such a situation may, for instance, obtain of the production process is under
statistical control except for occasionally but not too infrequently occurring
periods during which the quality of the product decreases, after which decrease
statistical control is immediately restored. If the decreases in quality are sharp
enough or the periods of decrease long enough, then the alternative will belong
to the class @ described before.

To give a practical example; consider a drill, which after some period of use will
wear off so that the quality of the manufactured article will decrease until the
drill is exchanged. After replacement of the drill by a new one, statistical con-
trol is immediately restored. Now, if the drill is not replaced in time, the
periods of decrease in quality will be long and the rate of decrease will become
rapid so that the sequence of distribution functions will satisfy the conditions
of the class Q. A similar situation occurs also in time studies. For instance,
in the foregoing example, the time necessary for drilling one hole will tend to
increase when the drill is too long in use.

The following test first proposed by Moore and Wallis [3] for the study of
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economic time series seems appropriate for our purpose: Let z;, - - - , 2, be the
sample and form the sequence x2 — 1, - -+, Zn» — Za—1. Let S be the number
of negative differences in this sequence. Clearly, the distribution of S is in-
dependent of the distribution of z; provided the sample is an independent random
sample from a continuous distribution. Under one of the alternatives of the
class 2, Swill in a sample of # tend to be larger than in a random sample if A, > 0.
Hence S may be used as a statistic to distinguish between randomness and any
of the alternatives of the class Q. The distribution of S was tabulated by
Moore and Wallis [3] for n < 12. They also found empirically that S approaches
a normal distribution. The asymptctic normality of the distribution of S
can be proved rigorously in a way analogous to the proof of Theorem 1 of a
paper by Wolfowitz [4]. The first four moments of S were obtained by Moore
and Wallis. The fourth moment, however, only by empirical methods. In
this paper we shall derive a formula which makes it possible to compute the
moments of S recursively. With the help of this formula we shall indicate an
alternative proof of the asymptotic normality of S using the method of moments.
Finally, we shall derive a lower bound for the power of the S test with respect
to alternatives in Q valid for large n and depending only on A, .

2. The momentsof S: Let P,(S) be the number of permutations in n variables
with S negative differences. MacMahon [5] has shown that
(1) P.(S) = (S + 1)P.u(S) + (n — S)P,a(S — 1).

n

Using (1) Moore and Wallis [3] have tabulated P(l S — ; ! ’ >|8 - n ; 1 ‘ ) .
In using their table for our purpose, one has to keep in mind that we are using
n—1

a one tail region; therefore P(S > J) is for S > one half of the value

tabulated by Moore and Wallis.
Clearly the first moment of S is n—;——l, since the expected value of — signs
equals the expected value of + signs. To find higher moments we multiply (1)

by (S - ; 1) divide by n! and sum over S. Then we obtain

o w27 -2 o)

+112E—-1|:(n—s"1)(3“n;1+1)’],

where E,[f(S)] denotes the expectation of f(S) in permutations of n variables.
From (2) we have
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Putting S — E(S) = z we obtain
® B = Bualle — 3 — 2 + P + ol + D + - D)

From the symmetry of the distribution as well as from 3 it may b-  sen that
all odd moments are 0 and therefore
e+ 9"+ (z — ¥ = E@x + »*
Elz(z — P* — 2@z + H*] = —2E[@ + D*M|+ E@ + "
Hence we obtain from 2
) E@") =0, 4 =20, 1,--

Ei@®) ="T1p [+ 3% - ?LE,._I (@ + 3)*

n

If all moments below the 2ith moment are known (4) becomes a «  erence equa-
tion whose solution yields the 2ith moment for n > 2;. Thus o1 >btains

2 _ 5 _n+1 o _Sm+1"—-2 +41)
O =BG =2, B = o :
o _ 35(n + 1) — 42(n + 1)* + 16(n + 1)
E&) = 4032 :

21

Itisnotdifficult to provefrom (4) by induction that lim €?z9) =(21—-1)(2:—3)
n—+w0 a'“

-+-3.1. To do this one proves first by induction that E,(z*) is for n > 2i a
polynomial in n of degree 7. It can then be proved by induction that the first
coefficient of this polynomial is (20 — 1)(2¢ — 3) --- 3.1/12° from which the
assertion follows. Since (2 — 1) --- 3.1 are the moments of a normal distribu-

S—n;I)VI2

n+1
distributed with mean 0 and variance 1. This result follows, however, also
easily from Theorem 2 of a paper by Wolfowitz [4].

tion with variance 1 it follows that

is in the limit normally
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It is also possible to show by induction from equation (4) that for n > 2i the
2ith moment of S is smaller than the corresponding moment of a normal distribu-
n+ 1

tio ith vari _
ion with variance 12

3. The power of the S test. Let us assume now that one of the alternatives
of the class @ is true. This is to say p; = Pl > i) = % + &,
> & = A(n — 1), liminf A, =X > 0. Let

1 if the 7th sign is —,
"~ |0/if the ith sign is +.
We shall show that
P(zipn=1|2z,=1) £ P(zisa = 1).
We have

[ e [ o0 | [ anten < [ e [ apen [ e
< [ ae [ [ e [ aitan.

zy EST z2
Adding [ fo(z2) [ L dfa(22) [ dfs(?cs)] to both sides of this inequality we

have

[[ e [ anen < [ aten [ [ arten [ .

Integrating both sides with respect to z;, we obtain

[:., dfu(z) L: dfa(z.) L dfs(z9)
< [ [:w df(z) L: df2(x2)] [ f_ :dfz(xz) _E: dfa(%)]

Pizi=1 and z2=1) <P(zi=1)-P(zz=1).

or

. . . n—1
From this it follows that o.,.,,, < 0. Since ¢}, = 1 — € we have o < —3

St gL N 1 (1 — 02). Moreover E(S) = = ; 'y A(n = 1).

Let M = Nif A <.2and 0 < N < Nif A = 4. The critical region is for suffi-

n—1 n+1
g T 12

, where ¢

ciently large n given approximately by S >
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depends on the level of significance @ and must be chosen so that \/— f

¢ ¥ dz = a. Hence, if we can show that under any alternative H of the class
Q2 and for any ¢ > 0

G) PS> EES) — L \/(n DA = %) < —— [ ez + e

for every t > I > 0, n > N(e, H, ), then we shall be able to give a lower bound
for the -power of the S test. The power of the S test is approximately given

S

From (5) we have

-1 /n + 1 " st
P (S > n ) f e dr — €
2 \/2‘“' (/A2 (n=1)1/3

(6) vV (3r—3)(1—4\'2)

Vit T=2a =D V3 o ;0 4> N H,D.
V3(n — 1)(1 — 4\?)

for

The author considers it safe to assume that (6) holds with a fairly small e for
n > 12if X’ in (6) is replaced by N where \s = M if Ay < 2and A, < 3if N, =%
and if A\’ is not too close to 3. He bases this belief on the rapidity with which
the distribution of S approaches normality under the null hypothesis of random-
ness, and on the fact that at least under the 0 hypothesis the moments of S are
smaller than the corresponding moments of a normal distribution. It may also
be seen from the following derivation of (6) that in many cases the power of the S
test will be considerably above the lower bound given in (6).

To prove (5), we need the following two lemmas

LEmMa 1. Let P(x < ¢) = f(t). Let further E(z) = 0, E(Z) = e. Then for
every § > 0

Q) f(t+5)+ >P(x+z<t)>f(t—6)-——.
Proor: Applying Tschebycheff’s inequality we have
Pz+2<1) SP(x$t+6)+P(x_'2t+6andzs —9)
<P <t+98+Pez< =8 f(t+9) +62’
Px+2<t)>Px<t—23dandz <)

>P(x<t—a)—P(z>6)>f(t—6)——
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Lemma 2. Let {2;},72 = 1,2, - - - be a sequence of independent random variables
with mean 0 bounded kth absolute moment, k > 2, and variance oi. Lete M >0

Z g; 2 — M
and lim sup &= =~ = M. Form the sequence of random variablesy, = M/n

n—+00

then for any ¢ > Oand any t > 1 > 0
1 b 4
8) Py. £ —1) < 7‘5;[ et?dz + ¢ for n > N(e, 1).

Proor. Form a sequence m, with lim m, = 0. Let y. = z3 + 23

a —+w

where

Z" X; Zz. Z z;
" M \/"‘ " M \/— *
Z“ denotes summation over all 7 for which ¢ > m, and all sums extend from

one to n.
Let f5 be the distribution of z5 then by Lemma 1

mc

=t 48+ e > Py < —) 2 fi(—t— 5 — M=

Now we distinguish two cases.

1st Case. The number of integers 7 with o7 > m, is for some a of order a.
In this case {f5} differs arbitrarily little from a sequence of normal distributions
with mean 0 and the upper limit of the variances at most 1.

2nd Case. The number of integers ¢ with oF > m, is for every « of smaller
order than n. In this case x5 converges stochastically to 0. In both cases
(8) holds true since m. can be chosen arbitrarily small.

We can now prove (5). It follows easily from Tschebycheff’s theorem that
(5) is true if A = . Hence we may assume A < 1. Let 2; be defined as at
the beginning of this section. Form

B 2 — E@)
St Vin — DA — )’
ot = 2(zix — E(zi1)) 7 = X! 2(z; — E(z)))
A/ (n - 1A — )’ TSV = 1A — )
where m’ = gk is the largest integer multiple of £ which does not exceed (n — 1).
We form further

k
v =

i=g j=g

=Zv?, zf=}:u?.

=1 I=1

-1
Since o3 < i ) it follows from LeEmMA 1 that

1
=1n — 1A — ) = k1@ — )

2(S — E(9)) o o
n— 11 — 42 differs arbitrarily little from the distribu-

the distribution of v
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tion of 2% for sufficiently large » and k. The second and the third absolute
moment of v/n — 1 v* are bounded. Hence v/n — 1 ¢} fulfills the condi-
tions of LEMMA 2. The application of LemMma 2 yields (5) and conse-
quently 6.

The integer N (e, H, {) is independent of ¢ provided the lower limit of the
integral does not exceed —{. Hence we have proved

THEOREM. Let 1y, t2, - -+ be any sequence of numbers satisfying the condition

g =bVatl-—20 - DMVE g
, V(@n = 30 — 4%

where N’ = lim inf A\, #f lim inf A\, < 3 and 0 < X’ < % otherwise. Let P,(S, H)

n—s00 n—s00

be the power of the S test with respect to the alternative H and critical region S >
n—1 /n+1
) + i, T Then
.. 1 ® g
n = * > 1.
(9) lu::onf [P (S;H)/\/2w [ine dx] >1

It is worthwhile to remark that (9) is sharp. That is to say there exist alterna-
tives for which the left side of (9) is equal to (1). This is obviously the case
for any alternative with P(z; > z;41) = 2 + Aand P(z; = land z;u = 1) =
P(z; = 1)-P(z;11 = 1). These conditions are, for instance fulfilled by the
alternative givenby P@ipi =@ =8 — ++- — 8°) = 3 + N, P(@su=C + 6 +

. 26
o+ 8)=4—-7N1=1,2, --- where (a — ¢) >m>0.

If t, = t for every n then (9) implies the consistency of the test if the order
of A\, is larger than 1/4/n. It may also be seen that the test is not consis-

1
tent with respect to alternatives for which A, is of order at most equal to 7—1—2 .

This remark refers of course only to alternatives for which z; is independent of
z; for ¢ = j.

REFERENCES

[1] J. WoLFowiTz, “On the theory of runs with some applications to quality control,”
Annals of Math. Stat., Vol. 14 (1943), pp. 280-288.

[2] A. WaLD AND J. WoLFOWITZ, “On a test whether two samples are from the same popula-
tion,” Annals of Math. Stat., Vol. 11, (1940), p. 147.

[3] GeorrrEY H. MOORE AND W. ALLEN WaLL1s, ‘“Time series significance tests based on
signs of differences,’”’ Jour. of the Amer. Stat. Assoc., Vol. 38, (1943), pp. 153-165.

[4] J. WoLrowiTz, ‘“The asymptotic distribution of runs up and down’’, Annals of Math.
Stat. Vol. 15, (1944), pp. 163-173.

[5] P. A. MacMaHON, “On the compositions of numbers’’, Phil. Trans. of the Royal Soc. of
London, Vol. 207, pp. 65-134.



