COMPACT COMPUTATION OF THE INVERSE OF A MATRIX

By FrepERICK V. WAUGH AND PauL S. DwyER
War Food Administration and The University of Michigan

1. Introduction. Among the most common applications of mathematics to
practical problems are the solution of simultaneous equations, the evaluation of
determinants, and the computation of the complete inverse, (or the complete
adjugate), of a given matrix. Even with modern computing machines these are
laborious, time-consuming jobs. For that reason there has been great interest
in recent years in the development of so-called ‘“‘compact’ methods; that is,
methods that eliminate all unnecessary detail, that use computing machines
to do as much of the work as possible, and that only require copying the results
needed in further analysis.

In 1935 a paper by one of the authors [1] and since then papers by the other
author [2], [3], [4], [5], [6] and [7] have outlined a variety of compact methods
and have applied them to actual problems. These papers, together with other
recent contributions, such as those presented in [8], [9] and [10], have resulted
in much improved and more compact techniques in the general field of the solu-
tion of linear simultaneous equations and allied topics, especially if the matrix
is axi-symmetric. It is not generally recognized, however, that extension of
these procedures (usually involving matrix factorization [7] [10]) can be used
to compute the inverse (and adjugate) directly from the matrix factors without
the necessity of the reduction of the unit matrix [11; 150] [2; 121] when the
matrix is non-symmetric.

The present paper extends the use of compact methods in three ways.

(a) It presents a method of computing the inverse (and adjugate) of a sym-
metric or non-symmetric matrix by compact Gaussian methods without the
formal reduction of an auxiliary identity matrix.

(b) It introduces the method of multiplication and subtraction with division—
a.modification of the method of multiplication and subtraction—and shows that
the terms recorded in the compact solution are themselves determinants which
are minors of the determinant of the matrix.

(¢) It uses the method of multiplication and subtraction with division as a
compact means of computing the exact value of any minor of the determinant
of the matrix (whether symmetric or non-symmetric). It further shows how all
cofactors of order n — 1 (constituting the adjugate) can be computed from a
compact presentation of the calculations of the determinant of the matrix.

2. Gaussian methods and notation. Probably the method most generally
used to solve simultaneous equations is the division method originated by Gauss
[12]. Variations of this method are known as the Doolittle Method [13], the
method of pivotal condensation [14], the method of single division [2; 104-112],
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and the Crout method [8]. The methods as outlined by Gauss and Doolittle
are applicable only to axi-symmetric matrices (common to least squares theory)
while a more general presentation, applicable to non-symmetric matrices as well,
has been made by more recent authors.

The compact form of this method, extended to apply to the non-symmetric
matrix, used in this paper is as follows:

Given the matrix

an (17} Q13 * " qn
an Qo2 Gog* * * Qo
) a = (ax) =an asz Qg3 * *Ogn
l,aful Qn2 Qng a’ﬂﬂJ
we compute
an a2 Qa3 ()TN
by Az2.1 Qg3.1 Qgn.1
V)] ba bs2.1 Agg.12° © *A3n.12 J
[bnl bnz.l bM.l2' ° 'bim‘lz-un—l
where
bn = an/an

Qg = G — baGyk
by = ap — rxatz)/azz.l
(3) O3z = Qg — bgp@y — bszaGsra
biasz = (@ — buais — brz.lazs.l)/ as3.12

and in general

Qjk.12. .. j~1Arj.12. .. j—1

Ar-12...5 = Qpk-12:00j—1 — ,
@jj-12.+.5—1
4)
Ark.12.. .5
brk~l2-~~j = — .
Akk-12:--5

It should be noted that Crout’s presentation [8] is similar to that used here
except that Crout divides the elements of each row by the leading element while
we divide the elements of columns.

The notation used above, introduced by one of the authors [2], parallels that
used extensively in multiple correlation and regression theory. It differs some-
what from the notation used by Gauss. See [12; 69].

Since every b is the ratio of two a’s it follows that every b can be written in
terms of a’s so that the formulas can be written in terms of a’s alone. This is
what Gauss did although he used [ ]’s instead of a’s. Gauss also used letters to
indicate the primary subscripts and a single secondary subscript to indicate
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the number of eliminations. Thus our as., was written by Gauss as [bb, 1] and
a33.12 appeared as [ec, 2].
It is in the interest of less extensive notation and it makes our notation some-
what closer to that introduced by Gauss if we replace
a,k.m...j by Qrk- ()
brkdzmj by brk-(j) .
This shortened notation can always be used when the secondary subscripts
include dlf the integers from 1 to j. In this modified notation the formulas (4)
become
k- (j-1) Arj. (j—
k() = Qi (jmyy — YD 07 GD
jj- (-1

®)

Ark-(j)

bk
ik (5)

3. Solution by matrix factorization. The values of matrix (2) are in general
not final answers to proposed problems but they are values from which final
answers can be computed. The matrix (2) exhibits essentially both the triangu-
lar matrix of the a..(; which we call t and the triangular matrix b,.; which
we call 8. (The diagonal entries of the 8 matrix are all unity and do not appear.)
Hence (2) is really 8 — & + t.

A basic property, useful in most problems involving the use of (2), is that 8
and t are factors of a. Thus

(6) a=96t and a— 8t = 0.

That this is true in the symmetric case was proved in an earlier paper [7; 85].
That this is also true for the non-symmetric case is now shown in a similar
manner.

Let t; be a matrix (n by n) with the first row composed of elements ay. and
all other elements 0. Let 8; be a similar matrix with first column elements b,, =
Qr1

- and all other elements 0. Then a — &t; = a; = (@.1) is a matrix (n by n)
11

with all elements of the first column and first row 0.

Next let t, be a matrix (n by n) with the second row elements as.; and all
other elements 0. Let 8, be a matrix (n by n) with second column elements
br2.1 and all other elements 0. Then a; — 8t; = a; = (@:+.¢)) is @ matrix (n by n)
with each element of the first two columns and first two rows equal to 0.

This process is continued through n successive steps, an additional row and
column being made identically zero at each step. We have then

(7) a—@ltl—éztz— —Q”tn = ﬂn+1=0.
Now consider the triangular matrix
=t+t+ts+ -+t
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with its rows composed of the non-zero rows of . Consider also the triangular
matrix 8 = 8 4+ 8 + -+ + 8,. Then 8t = &t; + &t + --- + 8.t, since
8t; = 0 for 7 = j; and (7) becomes

a—8t=0 or a= 8t

4. Gaussian computation of inverse (and adjugate) without formal reduction
of auxiliary identity matrix. The inverse of a,a™ = € = (c4+) can be calculated
directly from the matrices 8 and t of (2). The adjugate ® = (d) can be calcu-
lated by multiplication by the determinant of the matrix and this can be calcu-
lated by the well known formula

® A = an0s.108.¢2) *** Gnn-(n-1) -

The theory is presented in some detail and illustrated for the case n = 4 after
which a more general matrix presentation is given. The matrix equation
a@ = & is equivalent to the following 4’ simultaneous equations in the 4* un-
knowns (cy):

1 0 0 0

an Ci + iz Cor + Qa3 Cax + Qi Cax
9) @1 C1i + Q22 Cor + o3 Cax 1 G4 Cax 0 1 0 0
@31 Cix -+ @32 Cox + Qg3 Cax + Gaa Cax 0 0 1 0
Gy Cik + Qg Cor + Az Car + Qe = 0 0 0 1

Now since Ga = & also we have a’€’ = & and there results another set of 4*
equations in the 4° unknowns (c.) .

r=1r=2r=3 r=4
ancn+ @ce+ st anca= 1 0 0 0
(10) Q12Cr1 + G2 Cr2 + A32Cs+ Q2 Ca = 0 1 0 0
Q13Cr1 + A3 Cra+ A3 Cra + Guzcs = 0 0 1 0
0 Cr1+ OucCat @GucCas+aucy= 0 0 0 1

Fisher [11; 150] has shown that the equations (9) could be solved by reducing the
unit matrix on the right. One of the authors has shown how to calculate the
inverse of a symmetric matrix by Gaussian methods without reducing the unit
matrix [1]. We now show how to reduce the non-symmetric matrix similarly.
By the same process used in getting from matrix (1) to matrix (2), we can reduce
the 4% equations of (9) to the 4* auxiliary equations below.

k=1k=2 k=3 k=4

ancu+ ae e+ s cxkt+ouw cu= 1 0 0 0

@21 Cok + Qos1 Cak + Oua C = ¥ 1 0 0

(11) QA33.(2) Cak + A34.(2) Car = * * 1 0
Qy4.3) Cak = * * * 1

The terms marked * can be computed by the process. However if we do not
compute these terms we have ten equations with the right hand terms either
lor0.
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In a similar way the 4° equations of (10) can be reduced to the 4° auxiliary
equations below. As above we may neglect the calculation of the diagonal
terms, and of all terms below the diagonal, and still have six equations (with
terms on the right zero).

r=1r=2r=3 r=4
1t buce+bn ¢stban cu= * 0 0 0
(12) Co+ bpacs+ baor cu= * * 0 0
Cr3 + b43' @) Cra = * * * 0
Cu= * * * *

The ten equations of (11) with the six equations of (12) are sufficient for de-
termining the inverse matrix. Solve (11) for k = 4; then solve (12) for r = 4;
then solve (11) for &k = 3; then solve (12) for r = 3; etec. Each equation can be
solved completely on the machine to give a value of a ¢ .

It should be noted that Gaussian methods are approximation methods since
they are division methods. For a discussion and treatment of the errors re-
sulting the reader is referred to papers by Hotelling [9] and Satterthwaite [10]
to which further reference is made in the next section.

Different forms for presentation of the results may be used. We suggest
the following form which presents first the matrix (1), then the terms of the
matrix (2). The terms of the matrix € are then computed by (11) and (12)
and placed diagonally adjacent to the terms of (2). The transpose of € is used
s0 that the check multiplication by a may be most easily accomplished. The
result of this multiplication which next appears shows that the computed value
of a is correct to three places. The final matrix of Table I gives the value of
the adjugate, ©, as found by multiplying each element of the inverse
by (26)(52.308)(39.356)(43.071) = 2,305,300 (to five places).

It is possible to check the accuracy of the entries of each row and column
of the matrix (2) separately by using a check sum to the right of each row and
at the bottom of each column. We have not taken the space to show check
sums and they are not particularly needed after one gets a little practice with
the method. In any case aa™* should be computed as a final check.

A more general matrix presentation results from the use of (6). The matrix
equation a€ = & becomes 8t€ = & and hence the auxiliary equation becomes

(13) t€ = ¢7L
Now since 8 is triangular with unit diagonal terms and zeros above the diag-

onal, it follows that 8~ also has unit diagonal terms with zeros above the diag-

nn 4+ 1)
2

onal. Hence we can select equations from the n’ equation of (13)

which demand no further knowledge of the entries of 8'. A similar treatment
of the matrix equation /¢’ = &, t'¢’¢’ = & and

(14) g¢ = ()™

yields 1L(7}2—_—1) equations involving zero terms of (t')™. These two sets of
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equations taken together in the proper order are sufficient for calculating the
n’ values in the inverse.

It may be of interest to note that this is also a procedure for calculating
t7'87 when t and 8 are known without the calculation of t™* and 8" separately
since

(15) C = o' =t

6. The method of multiplication and subtraction with division. We now
present a different method, based upon the work of Hermite [15] and Chid [16]

TABLE 1
Suggested form for calculation
26 —-10 15 32
19 45 —14 -8
—-12 16 27 13
32 29 —-35 28
26 -10 15 32
.02873 — .00696 .01825 —.00283
73077 §2.308 —24.962 —31.385
.02436 .01239 .01440 —.02267
-~ .46154 .21765 39.356 34.600
—.02302 .01572 .00791 .01991
1.23077 .78970 — .85753 43.071
—.01519 .00419 — 02041 .02322
1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000
66231 —16045 42072 —6524
56157 28563 33196 52261
— 53068 36239 18235 45899
—35018 9659 —47051 53529

together with important modifications suggested by the work of Dodgson [17].
Current presentations of the basic method include the “method of condensation”
[18; 45-48) and in compact forms, the “method of multiplication and subtrac-
tion” of one of the authors [2; 197-202].

In Gauyssian methods we divide each element of a column by the leading
(diagonal) element of that column. In the method of multiplication and
subtraction we use the leading element as a “pivot”’ forming a number of two-
rowed determinants. Thus we use the leading elements as multipliers rather
than as divisors. No divisions are made in this method. This is a very real
advantage when the elements of the original matrix contain only two (or three)
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digits each and when n < 7 (or §). In such cases we can use this method to
compute ezactly the values of any minor of the determinant of the matrix and
even the adjugate itself.

It is perhaps well to mention here that error control is difficult with division
(Gaussian) methods. Even if many significant places are carried the errors
may be significant, cumulative, and difficult to measure. The techniques
suggested by the papers of Hotelling [9] and Satterthwaite [10] are most useful in
developing error control in matrix calculation. However, where accuracy is
important, and when the number of digits is not excessive, there appears to be
merit in calculating the exact values.

In the method of multiplication and subtraction, we compute from the matrix
(1) the following matrix

an Qe a3 e in
ay Ay Awpy - Az
(16) an Ana Aso o Ameo

. Amea Ans@ c Appen
where
Ark~l = Anbyr — A1y

17)
Ark-(z) = Azz-lArlr-l - Azk-lArz-l

and in general
Ay = Ajii-nArey — Ajp-nAriin.
This notation is similar to that used in connection with Gaussian methods above.

In the method of multiplication and subtraction with division, we compute
from the matrix (1) the following matrix:

an a2 a3 MR /5T
@y By Bya - By
(18) a5 Bypa Bu. c Ba@
An1 an 1 Bn3 (2) Bnn (n—1)
where
By = ana — anan
B Bys.1Bi1 ~ Bak1Brea
rk-(2) =
(19) an
Buw = Bys. ) Brk.y — Bar.@ Bs.»
rk-( =
B

and in general

B... 1 Bk~ iy - B'k-('—l B... . p
(20) Brk-(j) = Pij- (=1 Drk- -1 jk- (j—1) Drj.(j—1)

Bj-1i-1-43-»
with B,i.1 and B¢ as defined in (19).
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In general the method calls for the calculation of entries according to the
method of multiplication and subtraction but in addition calls for the division
by the leading element of the second preceding row or column. Since this
division must be exact, as is shown in the next section, we have at each stage
a good numerical check on the work as well as an exact value of the entry. Fur-
thermore it is shown in the next section that the value of B,;.(; is the exact value
of the determinant

an iz au a1; Qi
Qg1 Qg2 (o3 ° Qz; Qg
Q3 Q3 Qg3 * - A3z; A3k
(21) e
Q1 Qjp Q53 Q55 G
l Ary Qrp Qg - ar} Qri

All the recorded entries (themselves values of determinants) are calculated on
the machine. The only limitation is the number of places the machine provides.
For the trivial problems (composed of small integers) found in most texts of
College Algebra, one can calculate the values readily without machines. For
example the determinant

2 1 ) 4 2 1 -3 4
3 2 2 1l 3 1 13 —10
-9 -1 1 3 ylelds at once -2 0 -9 7
4 -3 2 1 4 —10 73 —397

and the value of A is —397. All the other entries are also minors of A.

Dodson introduced a method of multiplication and subtraction with division
as early as 1866 [17]. He however used a moving pivot. For our purposes it
seems preferable to use a fixed pivot as we suggest in this paper.

6. Proofs of theorems involving the B ,.(;.

(a) First theorem. We first prove that the numerator Bjj ;i 1nBr.(ioy —
B ji.(7-nBrj.(;—p in the definition of B,;.; is exacily divisible by the denominator
Bji,;a.i-2y . To do this we expand the terms of this numerator of (20) with
the continued use of

(22) By = Bj1,j-1-G-» Brk-(j— — Bjik--2 Brj1.-2
il) =
Bj 22—

(which is (20) with j replaced by j — 1) and then we multiply and cancel. It
is found that B; ;1.2 15 a factor of all non-cancellable terms so the exact
divisibility is proved.

(b) Second theorem. We next prove that B,i.(j 1s the value of the determinant
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(21). We illustrate first for j = 3 and then give a more general proof. When
j=3

an Q12 Qi3 G G G2 13 (1577

a1 G2 Qo3 Q2| _ ls 0 Bypa Byi By

a3 Gz (33  Gzk a; |0 Bsyn By Bska
0

Gr1 Qr2 Qr3 Qyk By, Bra B

By.y By Bia

_ L B B ' _ L Bss'(z) Bsk'(z) =B

= afl 321 33-1 Bak'l = B221 Ba . Bk . - rk-(3) -
B,s1n Busa B ' @ e ®

In the more general case we designate the determinant (21) by | a. | and reduce
the order by the ‘“condensation” method just illustrated. It is understood
that the values of By... used in the following proof have primary subscripts
larger than secondary subscripts since the rank of the resulting determinant
decreases with each condensation

1 1
) | @ | = o | Brgr | = B2 | Br-y |
1 1
= pi-3 |Brk-(3)l = = B: = | Bu-tj-n | = Brjy -
33-(2) 7—1,5-1-(j—2)

It is to be noted that the first theorem, since each B.:.(j can be interpreted as a
determinant by the second theorem, is a corollary of a well known theorem
[19; 33]. In a conventional determinantal notation it might appear as

(24) AAjk:rj = ArkAjj - ArjAj};

where the first subscripts indicate deleted rows and the second subscripts deleted
columns.

(¢) Third theorem. We next relate the values of B..¢j and the values a,.,
and by.(; . With the use of the second theorem (23) and (8) we have

B N Q11 Qo2.1 A33. c o0 Aji(—1) Qrk.
(25) k() _ (2) 35-G=D Qrk- () _ B
Ark- (§) Qrk- (7)

and with the additional use of (4)

ii (=1

B,:. Q110201 A33.2) * * * Qjj.(5—1) Ok
(26) brk [€)] = 11 G22.1 (33. (2) Qg5 (5-1) Urk-(5) —_ Bklc‘(]')~
rh- () Qrk- ()
ek ()

These formulas may be written in the form
@7) Bk = Bjj.(i-0@n-()

B¢y = Br (b5
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and since Bjj.(;_y and -Bji1,j41.¢; are diagonal terms, it follows that the matrix
(18) can be obtained from the matrix (2) by multiplication by diagonal matrices.
(d) Fourth Theorem. A fourth theorem gives explicit matrix formulation
to these results and shows how the values of the matrix (18) can be used in
factoring the matrix (1). Now (27) and (28) can be written in the form

(29) T = Myt
(30) S = My

where M7 is the diagonal matrix which multiplies t to get T and Mg is the
diagonal matrix which multiplies 8 to get ©. The values of the T matrix are
the values of (18) with » < k while the values of the © matrix are the values of
(18) with r = k. The diagonal matrix I, is composed of diagonal elements
(1, an, By -+ Bajni.(n—p] while the matrix I, is composed of diagonal
elements [a1, By, Bsu.@ - Bun.n—p]. The basic matrix factorization equa-
tion (6) then appears as

(31) a = M'M;'SL.
It is to be noted that exact values of elements of all these matrices are avail-
able if the inverse diagonal matrices are written in fractional form, subject of

course to practical limitations such as number of places of computing machine,
ete.

7. Computation of the adjugate matrix. We now present matrix formulas
which enable one to compute the adjugate of a compactly with the method of
multiplication and subtraction with division. If (9) is the determinant of a
and D is the adjugate of a, we have

D =|a|d
8D = |a|Q
tD = |a| g
MtD = M, I a [ gt
(32) ID =M |als”
and similarly
D = a9
18D = |a|S
gV = |a| @)
MDY =M,y |a| )™
(33) Y =M |al| ()

The computational procedure in getting the adjugate is very similar to that
used in getting the inverse in section 4. T and & are triangular matrices while
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¢ and t™! are the matrices used before. The values of M,[1, ay, B, - - -

Baijntm-n] Dlan, Bur, Bi.@, - Bu-ny] and |a| are first computed

by (18) so that M. | a | and M, | a | can be calculated. Without further calcula-
nn + 1)

tion we are able to select ———~—— equations from the matrix equation (32)

2
having known coefficients on the right ("'—(92——1) of which are zero) and 9(12:—1—)

equations from the matrix equation (33) having zero coefficients on the right.
These constitute the n* equations necessary to determine the n’ values of d.i .
These values of d,;, can all be calculated directly on the machine and, what is
more useful in discovering calculational errors, the divisions yielding the d
must be exact.

For n = 4 these n’ equations are

k=1 k=2 k=3 k=4

aundie+ap det+as dutouw de= [a] 0 0 0
(34) Boondox + By dsk + Buy du= * aula| 0O 0
Bu.» da + Bupdu = * * Bxala] O
Buy du= * % * Bu.»|al
r=1r=2 r=3 r=4
andn + ay dew+oan dest o du= * 0 0 0
(35) By dre + Bsar dys + Bagy du = * * 0 0
Bss.2) dis + Bus.2) drs = * o * 0

The process is similar to that of section 4. An illustration for the case n = 4
is given in Table II. The matrix of the B’s is directly below the matrix a and
the calculated values of the elements of 2’ (obtained by solving (34) and (35))
are placed diagonally in the cells with the B’s. The values of the transpose of
D are used so that the check, premultiplication by a, is easily carried out. The
next matrix in Table II exhibits a® = |a | ¥. The last matrix of Table II
is a five decimal place approximation to ¢’ which is obtained by dividing the
entries of © by [a|. Since we know these are the correct five decimal place
values of €, we may compare the corresponding values of Table I to see how
much those are in error. It should be noticed that the approximation to €’ may
be readily carried to more than five decimal places if desired.

As with the Gaussian methods, it is possible here, also, to check each row
and column individually by using check sums.

The work necessary for the computation of the adjugate from the matrix of
the B’s can be shortened somewhat by the use of the fact that the adjugate is
composed of the cofactors of the a, . Now the cofactors of the four terms in
the lower right hand corner are d,_1...1 = Ba_tn-1-t—2) } @ucin = —Ba_im-n-n);
Aoy = —Buwren 3 and d,, = Bon.s and these are available from the
calculation of the B’s though B,.._s is not recorded. (See the lower right
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four entries of the B’s and a’s in Table II above). With these four values
immediately available, the use of but n* — 4 additional equations is demanded,
or this additional information can be used in checking.

TABLE II
Suggested form for computation of adjugate (with check) and then inverse
26 -10 15 32
19 45 —14 -8
-12 16 27 13
32 29 -35 28
26 -10 15 32
66233 —16033 42069 —6503
19 1360 —649 —816
56151 28558 33194 —52258
—12 296 53524 47056
—53068 36236 18224 45899
32 1074 —45899 2305327
—35013 9659 —47056 53524
2305327 0 0 0
0 2305327 0 0
0 0 2305327 0
0 0 0 2305327
.02873 — .00695 .01825 —.00282
.02436 .01239 .01440 —.02267
—.02302 .01572 .00791 .01991
—.01519 .00419 —.02041 .02322
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