TESTING THE HOMOGENEITY OF POISSON FREQUENCIES
By PauL G. HokeL

University of California at Los Angeles

1. Introduction. The standard procedure for testing the homogeneity of a
set of k Poisson frequencies seems to be to apply the Poisson index of dispersion
to those frequencies. The originators of this procedure [1] pointed out that this
procedure may be regarded as a x* test of goodness of fit in which the Poisson
frequencies constitute observed frequencies corresponding to % cells with equal
expected values. Somewhat later it was shown [2] that the corresponding like-
lihood ratio test was approximately equivalent to the index of dispersion test.
Then the problem was approached from the viewpoint of conditional variation
[3], [4]. This approach permitted exact tests to be studied in some detail for
small samples. A few years later an exact test for the special case of k = 2
was introduced and studied [5]. In thisinvestigation consideration was given for
the first time to the efficiency of the proposed test. Tables of critical regions
for the test and tables for computing the power of the test corresponding to
certain alternatives were made available.

In spite of the desirable features of this last test, it still possesses certain draw-
backs. First, this test, as well as the others referred to, did not consider the
problem in which the rate of occurrence of a rare event is constant but for which
the sampling units differ in size. For example, these methods were not designed
to enable one to test whether a factory’s accident rate had remained unchanged
during the past month as compared with the preceding three months. Second,
in order to use this test it is necessary to possess the special tables or charts ot
critical regions constructed for the test. .

In this paper a method which does not require special tables is considered for
dealing with these more general situations. In the course of the development
it is shown that this method is, in a certain sense, the best method possible for
testing the hypothesis of homogeneity against one sided alternatives. Since this
paper is principally concerned with removing the undesirable features of the
method advocated in the last mentioned paper, it is advisable to read that paper
in conjunction with this one. The procedure to be followed here will be to derive
a uniformly most powerful test, show that it is equivalent to a x* test, and then
compare it with the previously mentioned test.

2. Similar regions. In the following two sections a study will be made of the
efficiency of a generalization of the critical region proposed in [5]. For this
purpose let x and y represent sample frequencies from two independent Poisson
distributions with means m, and m, . The probability of obtaining this sample
is given by

e m; € 'my
1) P, y) = ——" ”
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Following the notation and procedure given in [5], let

My

Smtmy "TETV

@) p = ms + my, 4

Then algebraic manipulation will show that P(z, y) reduces to

(3) P(xa y) = e—nl; . x|(nn_i x)ﬂf(l - p)n—z'

The hypothesis which it is desired to test is that
(4) — =T,

where 7 has been specified. The value of r will often be the ratio of the sizes of
the two populations under consideration or the ratio of the time units of the two
samples. In many situations the alternatives to (4) which are of interest will
be one-sided. For example, after a factory has instituted a safety campaign,
it would be of interest to see if the rate was unaffected as against the possibility
of the rate having decreased; hence the alternatives to (4) would be

My
5) o <r.

In terms of the parameters introduced in (2), the hypothesis (4) and its alterna-
tives (5) become

1 1
(6) P=11, and p>1+r.

Consider the probability given by (3) in much the same manner as was done
in [5]. This probability depends upon two parameters, 4 and p, only the latter
of which is specified by the hypothesis; consequent'y if critical regions inde-
pendent of u are desired, it will be necessary to find similar regions [6] with respect
to p. Since z and y are discrete variables, it is not possible to find similar re-
gions of arbitrary size; consequently it will be necessary to introduce continuous
approximating functions if such regions are desired and if best critical regions
are to be found. Toward this end consider the expression for P(z, y) in (3).
It states that the probability that x and y will take on specified values is the
Poisson probability that the sample point will fall on the line z + y = n, multi-
plied by the binomial conditional probability that the point will have the specified
 coordinate when the point is known to lie on thisline. If p and n are not small,
this binomial function could be approximated well by means of a normal function.
Or, if desired, factorials could be replaced by corresponding gamma functions
and the necessary normalizing factor introduced. Regardless of what con-
tinuous function is chosen, a region on each linex +y =n (n = 0,1, 2, --)
can be selected such that the conditicnal probability for this approximating
function is o that a point on that line will lie in that region. Most natural
approximating functions would become trivial for n = 0; therefore it may be
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necessary to choose an artificial function for this case or to adopt a convention
of letting the origin be the critical region for this case but accepting only 100«
percent of samples for which » = 0 as belonging to this critical region. The
totality of such « regions will constitute a critical region of size a which is inde-
pendent of u because from (3) the probability of a point lying in this critical region
would now be given by

00 B 0
(4 e
koL a =« Z =«
am0 n! n=0 n!

Thus, similar regions with respect to u of size a can be obtained by selecting
regions of size « on each line z + y = n.

The preceding method for obtaining similar regions is the only method for
doing so if such regions are restricted to be found on the lines x + y = n, because
if aregion of size a, were selected on each line x 4+ y = n, it would be necessary that

n=0 n!

independent of u. This is equivalent to requiring that
i wh
=t an!

follows that a, = a.

+

but since the power series for ¢ is unique, i

3. Common best critical region. Among these similar regions there will exist
a best critical region for testing the hypothesis p = p, against the single alterna-
tive p = p; if there exist best critical regions on each line x + y = n. From (6)
it will be observed that this formulation is equivalent to testing the hypothesis
r = 719 against the single alternative r = r;. The best critical region [6] on such
a line, if it exists, will be that region which satisfies the inequality

f=; Po)
@ T o) =
where f denotes the continuous function selected to approximate the binomial
distribution on this line and % is a constant determined so that the probability,
under the hypothesis p = po, will be « that a point on this line will lie in this
region. If the normal approximating function with m = np and ¢ = npq is
used, (7) becomes

(z—np1)? (z—npo)?

8) plql nP1a1 nPod0 ] < k.
pogo

After completing the square in x, it will be found that this inequality reduces to

1 n(1/q1—1/q0) 72
— -1 A L LA
9) enlt/ Pinn /poqol[z Urma-17pe00] < ¢,

where c is independent of z.
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If xo is a value of z such that
(10) Plz > z|p = po] = «,
then (9) will hold for x > z, provided that p1 > po. To demonstrate this fact,
it is convenient to consider the three cases py + p1 2 1 separately. If po +
D > 1)
1 1 1 1 1 1

1 1
~— 0, ——">0, —=->— ——
Q1 Qo >0, D1 Do4qo >0, @ Qo > P1qr poQo’

1 1 1 1
n (* - *) / (-—— - —) Since the coefficient
(31 % PiqL Po Qo

of the brackets in (9) which involves z is positive, increasing z will reduce the
left side of (9). If po + 21 < 1,
1 1

1:@1—1 —POQo

IA

and therefore z < n

and

n(1/q — 1/q0)

= < 0.

1/par — 1/Pogo
Since the coefficient is now negative, increasing z will reduce the left side of (9)-
Finally, if po + p1 = 1, (9) will reduce to

e 'If_l_';_o] [”_—;] <k

Since 1/p1 — 1/py < 0, increasing x will decrease the left side of this inequality.
It therefore follows that the region defined by (10) is a best critical region for
every alternative of the form p; > po on the line x + y = n. The totality of
such regions for n >’ 0, together with the previously mentioned convention for
n = 0, then constitutes a common best critical region among all possible similar
regions for testing the hypothesis (4) against the set of alternatives (5).

In a similar manner it will be found that if the inequality in (10) is reversed,
the critical region so defined, together with the convention, will constitute a
common best critical region for every alternative of the form p; < po. If the
alternative hypotheses consist of p % po, there will not exist a common best
critical region using these approximating functions.

The critical region proposed in [5] is that for the special hypothesis po = 3 and
the set of alternatives p % p, . It will be found that the lower half of this critical
region for P = 2« will differ little, except for very small samples, from that given
by (10) for this special case; however, it possesses the disadvantage of being
numerical and therefore of requiring a special table. The critical region given
by (10) does not possess this disadvantage. This fact will be demonstrated in
the next section.

4. Chi-square test. Consider the problem of testing compatikility between
observed and expected frequencies in two cells, Let z and y represent the ob-
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served frequencies and e, and e, the expected frequencies in a sample of size n.
If the probability that an observation will fall in the first cell is, as in (6),p =

1
I+ then
_ o _*ty
a=T =y
and
riz +y)
= 1 — = ——— .
o =n(l —p) = !
The chi-square function for testing compatibility then reduces to
2 2 2
11 2 _ (0; - 6.‘) = (y - 1‘:1:)
(1 x ; e iy + )
Y
1o} -
5

Ficure 1.

Let x2 be the value of x° such that Plx* > xi] = 2« for one degree of freedom.
With x® replaced by x; in (11), this equation determines a parabola in the z, y
plane. If z 4+ y = nisnot small, the probability of a point on thelinex +y = n
lying outside of this parabola will be approximately 2a, the accuracy depending
on the accuracy of the x* approximation, and hence the probability of a point
lying outside of and below this parabola will be approximately a. Thus, a critical
region for testing p = po against p > po will be given by that part of the positive
x, y plane which lies below this parabola. In Figure 1 the lower half of this
parabola for the special case of p, = % is indicated by the symbol x*. The critical
region for the alternatives p < po would be the region lying above the upper half
of this same parabola, while the critical region for the alternatives p # po would
consist of both of these regions at the 2a. level. For one degree of freedom, x
has a standard normal distribution; consequently the critical region given by
(11) is the same as that given by (10) in which a normal approximation is used
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on each line z + y = n. This equivalence is easily verified by replacing y by
n — z and r by ¢/p in (11).

6. Likelihood ratio test. The chi-square test of the preceding section yields
a common best critical region for testing (4) against (5) for the normal approxi-
mation. It is interesting to compare this critical region with that obtained by
the maximum likelihood principle, which requires no such approximations.
Consider, therefore, the two dimensional parameter space

Q: msz > 0, my > 0,
and the subspace

o ™o
mz
Maximizing P in (1) over Q yields m. = z and m, = y. Maximizing P over o,
treating P as a function of m, , yields m, = z + y/1 4+ r. Then the maximum

likelihood ratio becomes

e—(z+y) r + Yy N Y
\ = max Pw _ 1+ r . e—(z+ﬂ) xzyv

max Pq zly! ) zly!

This reduces to

oz + "
a2 A _(1+r) T
For a fixed value of A, this equation determines a curve in the z, y plane which
may be used to determine a critical region. Since —2 log A is known to possess
an asymptotic chi-square distribution under certain conditions [7], choose as
critical region that part of the positive z, y plane lying below the curve determined
by (12) when X has been replaced by Ay , where Ao is determined from —2log X, =
xs . This curve may be plotted by reducing it to the parametric form
T = log X ! Y =z
14+ r )

a1+ log1+r+vlog5

A comparison of the critical regions corresponding to (11), (12), and a slight
modification of [5] for the special case of py = 3 and a« = .05 is given in the accom-
panying sketch. The modification of [5] consists in choosing x, to be that integer
which most nearly satisfies (10), rather than to be the smallest integer for which
the left side of (10) does not exceed a. The latter method of choosing x, has a
tendency to make the first type of error considerably smaller than o for small
values of n. It will be observed that there are no appreciable differences between
the maximum likelihood and chi-square critical regions. Furthermore, it will
be found that there are only two values of n, namely n = 3 and n = 9, forn < 30
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for which the chi-square test and the modification of [5] might yield different
decisions at this significance level.

The preceding sections show that the chi-square test is highly satisfactory for
testing the homogeneity of two Poisson frequencies, except possibly for very
small frequencies, and that therefore special numerical tables are not necessary.

6. Several Poisson frequencies. The generalization of (11) for a set of &k
frequencies is, of course, the ordinary chi-square function

3 2
2 _ (x.' - np.-)
(13) X Z; np: —

k
where n = Y, x;, p; is proportional to the sampling unit from which z; was

1=l
k
obtained, and Y p; = 1. The Poisson index of dispersion is merely a special
=]
case of (13) when p; = 1/k. The adequacy of (13) for this special case has been
studied elsewhere [3], [8], while studies of (13) in general are numerous and well
known.
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