SAMPLING FROM A CHANGING POPULATION"®

By REiNHOLD BAER

Unaversity of Illinots

1. Introduction. If, in sampling a certain population, it is impossible to take
more than one sample at any given time, and if the population changes between
any two samples, then we are confronted with the following mathematical situa-
tion. For every’ t, 0 < t < 1, there is given a distribution* (= population)
D(¢). Let furthermore ¢; be, for 0 < 7 < n, a number between (j — 1)/n and
j/n; and assume that x;is a sample taken from the population D(¢;). We denote
by T. the set of the numbers t;, - - -, ¢, and by O(T.) the sample consisting of
the x; ; and we assume that O(T,) is a random sample, i.e. that 2, -+, z, are
independent variables. The question arises to get information concerning the
family D(¢) from the sample O(T,). It is clearly hopeless to try for information
concerning an individual D(¢) or even some D(¢;) or the statistics that may be
derived from them. But we may hope for information in the mean, if we assume
that the family D(t) is in some sense continuous in ¢. To make this statement
more precise we denote by a(f) the average and by M;(t) the i-th moment of
D(t) around its average. We assume then that a(f) and M;(¢), for ¢ < 8, exist
and are continuous functions of ¢, and in section 7 we shall have to assume
furthermore that a(t) and M,(f) are functions of bounded variation. These
hypotheses assure the existence of

fla(t)dt

0

the mean average a

1
and the mean ¢-th moment M, = f M, (@)dt
0

for ¢ < 8. Clearly we may hope for information concerning a and M; from the
random sample O(7T,). It is our object to discuss certain more or less well
known statistics of the sample O(T,), and to determine their stochastic limits’.

1 Presented to the American Mathematical Society. September 15, 1945.

2 The author is indebted to Dr. E. L. Welker for checking the results, in particular those
rather obnoxious computations needed in sections 6 and 7 which the author did not incor-
porate into this paper.

3 It constitutes a restriction of generality that we consider finite closed intervals only.
But it is no further loss in generality to use the interval from 0 to 1, and this choice certainly
simplifies notations.

4 Comparatively little will be assumed of these distributions. These properties will
be enumerated in Section 2.

5 See [2] p. 81 and the criterion 2.d. of section 2.
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As an illustration we mention the following results which will be obtained in the
course of this investigation (among others):*

n

- -1 .

& = n"' ), x; converges stochastically to the mean average a;
=1

n 1
s =n") (r; — %)* converges stochastically to M, + f (a(t) — a)tdt;
0

i=1

n—1

d* = (2n)' D (x; — x;11)" converges stochastically to the mean variance M, .
=1

It is clear that M, is the stochastic limit of s* if, and only if, a(f) is ‘constant.
If a(¢) is not constant, then s’ is not a consistent estimate’ of M, , and will have
to be rejected—at least for large n—in favor of d* which is always a consistent
estimate of M, .

It was this last point that led us into this investigation. Recently the sta-
tistic d” has found much attention; and the question arose as to why the statistic
s* should be rejected in favor of d°. Reading the illuminating introduction of the
fundamental paper [1], one sees that just such a situation as we have attempted
to describe here in somewhat abstract terms has necessitated the use of d’.
Consequently our result may be considered a theoretical justification for this
procedure.

Our other results will be discussed in their interrelation as they are obtained.
It should be noted that all our results concern themselves with stochastic con-
vergence, and thus they justify the use of a sample function as an estimate of
some statistical number only for sufficiently large size n of the sample. Thus
it is quite possible that for small n other functions provide better estimates.
The. practical applicability of our results depends, therefore, on a criterion for n
to be sufficiently large, and unfortunately such a: criterion is not yet available.

2. Notations and fundamental properties. We have not stated in the Intro-
duction the hypotheses to which we subject the distributions under considera-
tion. For our investigation we shall need only very few properties of distribu-
tions. Thus we are going to enumerate now some properties of distributions
which we are going to use, and we shall assume throughout that these properties
are satisfied. As will be seen these hypotheses are rather weak and are satisfied
by a large class of distributions.

If x is any stochastic variable, then we denote by E(x) its mathematical ex-
pectation, and the only properties of stochastic variables that concern us are
properties of their expectations. E(z) is a linear operation satisfying E(1) = 1,

6 It should be noted that the stochastic limit of the following statistics would not be
changed, if we substituted for the denominator n of s? the denominator n — 1 which is often
used, and if we allowed the summation in the expression for d? to range from 1 to n, defining
oyl 88 Ty .

7 Wilks (2], p. 133
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If furthermore z,, - -, 2. are independent variables, and if the function f
depends on some of these variables whereas g depends only on the others, then
E(fg) = E(f)E(g), and this property may serve as a definition of independence.

As stated in the Introduction we are going to study a family D(¢) of distribu-
tions, for 0 < ¢ < 1. If x is the stochastic variable of the distribution D(f)
for some fixed ¢, then we let

at) = E(x) and M.t) = E((x — a(®)).

We shall assume throughout that the average a(tf) and the variance M.(t) exist
for every t, and that a(f) and M,(t) are continuous functions of ¢. Moreover,
when discussing M;(7), 1 < ¢ < 4, we shall assume that every M ;(v) with j <
27 is a continuous function of 7. Thus we are sure that the mean average a
and the mean variance M, , as defined in the Introduction, always exist, and
the mean 7-th moment M; exists, whenever M,(f) is a continuous function of &.

Remark: If the mean ¢-th moment M; exists for every 7, then one may be
tempted to consider as the mean of the family D(¢) a distribution D with average
a and i-th moment M, provided such a distribution exists. But this has to be
done with some caution. For suppose that every D(¢) is normal. Then M;({) =
0 for every odd ¢, implying M; = O for odd 7 so that D would be symmetric.
But My(t) = 1-3--- (20 — 1)M,(¢)" and hence My; = 1-3--- (2t — 1)-

1 3
f M,(t)* dt, and the integral will be the i-th power of M, only if M,(t) is con-
o

stant. Thus the mean distribution D of a continuous family of normal distribu-
tions need not be normal.

As in the Introduction we now let ¢; be some number between (7 — 1)/n and
1/n, and denote by z; a sample taken from the distribution D(¢;). We denote
by T, the set of the » numbers ¢; and by O(T',.) the sample consisting of the z; .
It will be assumed throughout that O(7T,) is a random sample, i.e. we shall
assume that z,, - - -, z, are independent variables.

We are not going to make any use of the customary definition of stochastic
convergence’ (and we shall therefore not restate it). Instead we are going to
apply throughout the following criterion® :

2.d. The function f(O(T,)) of the sample O(T,) converges stochastically to the
number r, if

lim E(f(O(T4))) = r and lim E(f(O(T.)) — E(fOT)T) = 0.

All the sample functions considered will be polynomials of the variables
X1,y Tn.

8 Wilks [2], p. 81.

9 Wilks [2], Theorem (A), p. 134.

10 The validity of criterion 2.d. implies stochastic convergence in the customary sense.
Thus, all results obtained in the present paper remain valid also when the customary defini-

tion of stochastic convergence is adopted.
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3. The mean average. Though the discussion of this section is rather obvious,
we give the details, since they may serve as a convenient introduction to the type
of argument we have to use throughout.

THEOREM. I converges stochastically to a.

Proor: We note first that E(Z) = n* 3 E(z;) = n* 2 a({;). Since t; is
j=1 i=1
between (j — 1)/n and j/n, and since n”" is the length of this interval, it follows
from the continuity of a(f) that
1 n
f a(t)dt = imn™ 2 a(t);
0

n—+c0 =1

and thus we have shown that E(Z) tends to a as n tends to infinity.
Next we find that

B(@ — E@)) = n” E([Z; (5 — a(t) ])
- 0 3 B — a@)) = 0 3 M 1),

since E((z; — a(t;))(xn — a(t)) = E(x; — a(t)E(xn — a(ty)) = 0 for j # h.
But M,(t) is, for 0 < t < 1, a bounded non-negative function, showing that
E(& — E())% tends to 0 as n tends to infinity. Applying 2.d. we find that
% converges stochastically to a, as we intended to show.

Remark: It is clear that the speed of the stochastic convergence of % to a de-
pends on two factors:
(i) the goodness of Z as an estimate of E(Z);

n

(i) the speed of convergence of the sums n_lz a(t;) to the integral a =

fo ' at) dt. "

It is this difficulty which expresses itself in (ii) and which makes the present
type of statistical estimation less effective than the one concerned with sampling
from one distribution only. As to (i), it is again, as may be seen from the proof,
of the order of magnitude (M,/n)}, (see Theorem 1, section 4).

It is probable that % is a better estimate of E(&) than of a. But this does not
help, since the former depends on the particular choice of T, .

4. The variance. TumorREM 1. d° converges stochastically to M, .
Proor: We note first that
E((z; — z0)" = E((z; — a(t) + (a(t) — a(t;r)) + (@(tis) — z5)])
= My(t;) + (a(ts) — altisn)” + Ma(tis),

since E((x; — a(t))(@im — a(tj+) = E(x; — a(ty)E(xjp — altin)) = 0,
E(const) = const and E((z; — a(t;))?) = My(t:). Hence

E@) = 2074 + B - O),
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n n—1
where A = 22 My(t), B = 2 (a(t) — a(t;))’, C = Ma(t) + My(t,). Since
i=1 =1
t;is a value between (j — 1)/n and j/n, and since n~" is the length of this interval,
1
it follows from the continuity of the function M,(¢) that M, = f M,() dt =
o

lim (2n)'A. Since M,(t) is bounded as a continuous function, it follows that

(2n)7'C tends to 0 as n tends to infinity. Finally we infer from the continuity
of a(t)—which is used here for the first time to its full extent—that there exists
to every given positive e an integer N = N(e) such that (a(t’) — a(¥ M < e
for | ¢ — ¢"| < (2N)™'. Thus for N(e) < n we have (a(t;) — a(tjy))? < eand

(2n)'B < n:‘é—lﬁ e. Hence (2n)'B tends to0 as n tends to infinity, and we have

shown that
E(d”) tends to M; as n tends to infinity.
Next we note that

E((d — E@))") = E@) — E@)’

= (2n)”" ; (E((m: — i)’ (@5 — 2331)") — E((x: — 1)) E (2 — 2541)")].
But if both 7 and ¢ + 1 are different from j and j + 1, then E((z; — Tip)(x; —
z;41)Y) = E((x: — zip)?)E((x; — 2j11)%), and thus there are not more than 3n
summands in the above summation that are not identically 0. These sum-
mands, however, depend only on a(tx), M.(t), Ms(t) and Mi(4), and they are
therefore bounded. Thus E((d® — E(d%)?) is equal to (2n)* times a sum of
not more than 3n summands which are bounded. Hence E((d> — E(d%)*) tends
to 0, as n tends to infinity. Now our theorem is an immediate consequence of
the criterion 2.d.

1
THEOREM 2. s comverges stochastically to M, + f (a(t) — a)’dt.
o
Proor: We note first that n(z; — %) = Z (x; — x) and that therefore
h=1

§ = n’si > (x; — x)(x; — xx). Sincex: — x; = z; — a(t) + a(t:) — a(ty) —
(x; — a(Jt?)l),h':ve find as usual that
E((x; — z)") = Ma(t) + (a(t) — a(tn)® + Ma(t),
and if A # k we find that
E((x; — an)(z; — x)) = Ma(t) + (a(ty) — a(tn)(alty) — a(t)).
Consequently
2 B((a; — w)(z; = m)

nzMg(t,-) + h;nl Mz(th)
+ 2 (@) — aw)at) - at)
#Mm»+§mum+[§«w»—amﬂ

2
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Consequently

n 2

%[ @t - o)

i=1 h=

E@E) =nt Z; M) + n”? ; M) + n™

As in the proof of Theorem 1 we see that the first of these sums tends to M, as
n tends to infinity, and the second of these sums therefore tends to 0 as n tends
to infinity. The last sum equals

n’ g‘dk[a(tf)z — a(t;)(@(t) + a(t)) + altn)a(ts)]
=n" ; at;)’ — 207 3 alta(ty) + n”* g‘a(th)a(tk)

=n" jZ:; a(t;)’ — [n_l Zn; a(ti)]Z’

i=

1 1 2
and this expression tends to f a(t)? dt — [ f a(t) dt] as n tends to infinity.
o o

But
‘L‘l a(t)’ dt — [./: a(t) dt:l2 = '[ @(t) — o) &,

1
since ¢ = f a(t) dt, and thus we have shown that E(s’) tends to
o

M, + f 1 (a(t) — a)* dt as n tends to infinity.
If 7, h‘: k, p, q, r are integers between 1 and n, we put
G, ko k2, g, 1) = E((x; — 2n) (@5 — 2) (@ — %) (% — )
— E((x; — z)(@; — 2)E((x, — 24) (2, — ).
If neither j, h nor k is equal to any of the three integers p, g, r, it follows from the
independence of the variables x; that (j, b, k; p, ¢, 7) = 0. Thus
E((s" — E(s"))") = E(s") — E(8")" = n"2'(j,h, k; P, ¢, 1),

where the summation is taken over all the values of j, h, k, p, g, r between 1 and
n with the restriction that at least one of the three numbers j, h, k is equal to at
least one of the three numbers p, ¢, 7. This sum contains therefore not more than
3’n® summands, and each of the summands is bounded, since they depend only on
a(t), Ma(t:), Ms(t;) and M,(t;). Thus E((s* — E(s%))?) is equal to n~° times a
sum of not more than 3’7’ summands which are bounded. Hence E((s* —
E(s%))) tends to 0 as n tends to infinity. Now our theorem is an immediate
consequence of the criterion 2.d.

1
Noting that f (a(t) — a)*dt is nothing but the variance of the function
o

a(t) (around its mean a), we obtain the following obvious consequence of Theo-
rems 1 and 2.
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CoROLLARY: s — d® converges stochastically to the variance of a(t).
Remarks similar to those made in connection with the proof of the theorem of
section 3 may be made now in regard to the theorems of this section.

n—1

By similar arguments it is possible to prove that the statistic 0D it

fm=]
1
converges stochastically to f a(?)’ dt.
o

n—2

5. The third moment. Putd(3) = n™' ), (¢; — %j+1)*(®j41 — Tjs2). Then
=1

d(3) is a function of the random sample O(T%).
TuareoreMm 1: d(3) converges stochastically to M .
Proor: It is readily seen that

E((x; — 2;4)' @1 — Tjse)) = Ms(tin) + (a(tin) — a(tire))(Ma(ty)
+ (a(t) — (a(t) — a(ts)) + Ma(tsv)),
and in practically the same fashion as in the proof of Theorem 1 of section 4 one

shows now that E(d (3)) tends to M; as n tends to infinity.
Furthermore we have

E((d@3) — E@@®))") = Ed®)") — E@d@))* = n"* ’Z; (3, b),

where
Goh) = E((; — 241 @41 — Tj42) (@ — Ta41) (@41 — Tasa))
— E((z; — 2i+1) @i — T4 E((@n — 2a11)"(@a41 — Tasa)).

Clearly (j, k) = 0 whenever j + 2 < hor b + 2 < j. Consequently there
appear actually in the sum of all the (j, h) not more than 5n terms each of which
is bounded by an absolute constant, since they depend only on a(t:), M(),
Ms(t), Mu(t:), Ms(t) and Me(t;). From this fact we infer as before that
E((d(3) — E(d(3))®) tends to 0, as n tends to infinity, and our theorem is an
immediate consequence of the criterion 2.d.

Remark 1. If My(f), M.(t) and a(t) are constant, it follows from the proof that

E@®3) =" 2 M, ;

n—2

*
and thus (n — 2)7' X (x; — £;+1)*(Tj41 — Zj42) is an unbiased estimate of M.
=1

Remark 2. One might be tempted to use instead of d(3) the following function:

n—1

n Zl (x; — z331)".
&

By an argument of a nature rather similar to the one used in the preceding proof
one may show, however, that this statistic converges stochastically to 0.
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Put s(3) = n 'Y, (z; — £)° Then s(3) is a function of the random sample
7=1
O(T,). Furthermore let
1 1 1
F, = 3( [ eom de — adty — a [ @) dt) +20' + [ ') a.
o o o

THEOREM 2. s(3) converges stochastically to M3 + Fs .
Proor: For fixed j, let X(j) = 2 (z; — a(t;) + a(ty) — xs) and A(j) =
h=1

hZ"l (a(t) — a(th)). Then
EGG) = 17 3 B(XG) + A0

- ; [EXG)) + 34GEXG?) + 4G,

since E(X(j)) is easily seen to be 0. We find furthermore that
EXG)") = (v — 1)’ My(ty) + E([); (a(ts) — x)I)

= (@ = D' + DM) — 3 Mul);
EXGH = (0 — 1 Ma(ty) + E(Z;l (a(t) — z4))
= ((n — 1 — DM(t) + ; Moty
Consequently
E(s3)) = n*[((n — 1 =+ 1) jz::lMsa,-) +3((n — 1) — 1)2 AG)M(L,)
+3 ; AG) 3 Malo) + }_: A (j)’] .
Since furthermore }'_‘i A@) = 2; (a(t;)) — ats)) =0,
; AGME) = n Z_: alt)Mslt) — 3 ot Z_: M)
and
; AGY = Z_: [na(t;) - a(m]
=n® ;Z:l a(t,-)s — 3n’ ,Z: a(t,~)2 g a(tr) + 3n Z“; a(t;) [;.221 a(t;.)]

g

J=

3
’
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it is easily verified that E(s(3)) tends to M3 + F;, as n tends to infinity.

To prove that E((s(38) — E(s(3)))?) tends to 0 as n tends to infinity, one
proceeds as in the proofs of the preceding theorems, namely by verifying that
this expectation is n~° times a sum of not more than 4*n" summands which are
bounded, since they depend only on a(¢;) and on the M (&) for 1 < m < 7.
The proof of the theorem may then be completed by applying the criterion 2.d

It is readily seen that F; vanishes whenever a(t) is constant. But from

Fy = 3[ fo L a@Ma) dt — aMz:I + fo '@l — o) dt

we infer that F; vanishes too whenever M.(¢) is constant and a(¢) is at the same
time symmetric with regard to @, and more precisely: if M,(¢) is constant, a
necessary and sufficient condition for the vanishing of F; is the vanishing of the
third moment of the function a(t) around its mean. Thus we see that d(3)
is always a consistent statistic for M3, though s(3) is not.

6. The fourth moment. The results in this section will be stated without
proof. Their proofs can be constructed on exactly the same lines as the proofs
in sections 4 and 5.

n—1 n—1

@2n)™" Z; (@i — i)', n! ;; @1 — )’ (@1 — @)
1= =
and

n—1
-1 2/ 2
n Z; @1 — 2,) (T — ;)
pm

1
converge stochastically to M, + 3 f Ma(0) dt.
0

n—1 2
(4n)™* [ > (@ — x,-+1)2] converges stochastically to My + M3.
i=1

n—2

1
(4n)? 22 (@1 — ) (@01 — Tjy2)" converges stochastically to fo M) dt.
=

From these facts one easily deduces that M, is the stochastic limit of

_ 1 n—1 3 n—2
n 1[5 Z} (@; — z)' — i 2 (@ — 7)) (@ — xm)z],
P

7=

1
and thai f (Ma(t) — M®Y dt is the stochastic limit of
0

n—2

(2":)_1[”2 (x5 — xp2)" — %{'i (x; — $i+1)2} - Ez @1 — ) (@1 — xa‘+2)2].

= =

=

7. Efficiency. If f = f(O(T.)) is a function of the random sample O(T,),
and if f converges stochastically to a number r, then

lim nE((f — 7)%)

n—*0
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may be considered as some sort of a measure for the efficiency™ ** of the statistic
f as an estimate of r, provided, of course, the limit exists.
TaEOREM 1. If the function a(f) is of bounded variation, then

lim nE((Z — a)®) = M,.

n—0

Proor: Clearly
nE((Z — a)?) = n_lE<[iZi; (x; — a):|>
=n! é My(t;) + n7" [zn; (a(t;) — a)]

i=

2

n n n i/n
Now ]Z_l (at;) — a) = Z:l a(t;) — na = 7;1 a(t;y) — n /(j_l)/n a(t)dt].

Since a(f) is a continuous function, there exists a number u; such that
i/n
(j —1)/n < u; <j/n, and at)dt = n™" a(uy).
(i-1)/n

Thus

721 (a(t;) — a) = Zl (a(ty) — a(u;)).

= =

But both ¢; and u; are between (j — 1)/n and j/n, and a(t) is of bounded varia-
tion. Hence there exists a constant 4 which depends on a(¢) only and not on n
or T, such that

n 2 .
[Z (aft;) — a)] < A4 for every choice of T%.
i=1

The contention of our theorem is a fairly immediate consequence of these facts.

This theorem and its proof may serve as an additional substantiation of the
remarks appended to section 3.

Remark: If we had assumed only the continuity of a(f) instead of its being
of bounded variation, we could have tried to argue as follows: Since a(¢) is con-
tinuous, there exists to every positive number e an integer N (¢) such that | a(¢’) —
a(t’)| < efor | ¢ — | < N(¢e)™'. Hence we would find that for N(e) < n
we have

n! [i (x; — a):r < né;

i=1
and this inequality is certainly insufficient for proving that the left side of the
inequality tends to 0 as n tends to infinity.

TaEOREM 2: If the functions a(t) and M(t) are both of bounded variation, then
lim nE((d* — My)®) = M,.

n—r0

1 Wilks [2], p. 134/135.
12 or a measure for the asymptotic variance of the function f.
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Proor: In the course of the proof of Theorem 1 of section 4 we have shown
that E(d®) = (2n)™(4 + B — (), where

n—1

A=23 M008B = T (6 — ), C = Malt) + Myt

Since M,(t) is bounded, it is clear that n*C tends to 0 as n tends to infinity.
Since a(?) is of bounded variation, there exists a constant B* such that B < B*
for every choice of T, , and hence n*B tends to 0 as n tends to infinity.”* Fur-
thermore we have
n n iln

S Mat) — iy 3 [Mg(t,-) —n f Mz(t)dt].

i=1 i=1 G—1/n
Because of the continuity of M,(t) there exist numbers v; such that

i/n

(G=D/n <o <i/n and Mow) =n [ My

(G=1)/n

Consequently
Z; Ms(@t;) — nM, = Z; [Ma(t;) — Ma(v;)).
1= 1=

But M,(2) is a function of bounded variation, and thus we may infer, as in the
proof of Theorem 1, that n![(2n)™'4 — M,] tends to 0 as n tends to infinity.
Combining all the facts we see that n![E(d®) — M| tends to 0 as n tends to in-
finity, and hence we have shown that n[E(d®) — M,)’ tends to 0, as n tends to
infinity.

As in the proof of Theorem 1 of section 4 we note next that

E@d) — E@)’ = (2’:&)"2§ (9,

where (1, j) = E((x; — x.'+1)2(17j - $j+1),2) — E((x; — 17.'+1)2)E((17j - xj+1)2),
and that (7, j) = 0, if either7 + 1 < jorj + 1 < 7. Next we observe that

(G, 5) = E((m: — a(t:) + altiy)) — 2i)*(x; — a(ty) + altiy) — 1407
— E((z: — a(t) + altin) — 2:0))E((x; — alty) + atin) — Tj41)?)
+ (a(t) — a(ti+)) (@, 5) + (alty) — a(ts)) (G, 5)",

where the expressions (7, j)’ and (7, j)" are bounded (by a number independent

of 7, j, n or T).
Consequently we have

(G, 1) = My(t:) + 6Ma(t)Ma(tir) + Ma(tivr) — (Mo(ts) + Ma(tinn))?
+ (a(t) — a(ti)) (3, 0)*
= Myt) + Mu(tiv)) + Myt + Mo(tiss)

— 2(Ma(t) — My(ti))® + (a(t) — a(tisn))(, 0)*,
where (z, 7)* = (¢, 1)’ + (3, )" is bounded by a bound independent of ¢, n, T, .

13 A remark similar to the one made just before stating Theorem 2 may be made here and
below about the indispensability of the hypothesis that a(t) and M:(t) be of bounded varia-
tion.
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Likewise we find that
(@1 + 1) = Myts) Ma(tipr) + Ma(ts) Ma(tise) + Ma(topr) + Ma(tiyr) Ma(tiro)
— (M) + Ma(ti+r)) (Ma(tirr) + Ma(ti2))
+ (a(t:) — alt)) G, 7 + 1) + (@tin) — a(tin)) 6,1 + 1)
= Mi(tiy1) — Ma(tisr)’
+ (a(t) = altin)) G, + 1) + (@) — alti2)) ¢ £ + 1)7
Hence
(%, 2) + 202, ¢ + 1) = Mu(t:) + 3Ma(tir) + (Mt)
= Ms(tir1)) GMs(tis) — Ma(th)) + (alts)
— a(ti)) G, 97 + (a(tir)
— at2) G, ¢ + 1)7,
where (i,2)" = (¢,4)’ 4+ (4,4)"”" + (i, ¢ 4+ 1)’ is bounded by a bound independent
of 7, n, T. Considering that

n—2

;@ﬁ=§aw+2§@i+u

it is now deduced from the continuity of the functions a(t), M,(t) and M,(¢) that
n[E(d") — E(d®’] tends to My, as n tends to infinity. We note finally that
E((d® — M,)*) = E((d® — E(d))*) + (E(d®) — M), and the theorem is an im-
mediate consequence of the facts we have deduced.

THEOREM 3. If the functions a(t) and My(t) are both of bounded variation, then

ligxm nE((s — M, — j; l (a@t) — a)*dt)®)

- M, - fo Ma(dt + 4 fo " @O M0 — aMy)di + 4 fo " Ma0) (alt) — @),

Proor. Since a(f) and M,(t) are of bounded variation, we show—as in the
proofs of the two preceding theorems—that

ntn™ 2,‘:1 a(t;) — a),n'n™ zn; a(t,)? — ‘/: a(t)’dt), and
nn Z M,(t;) — M)

all tend to 0, as n tends to infinity. In the proof of Theorem 2 of section 4 we
computed E(s*). Using. this result we obtain:

wEC) M, [ (@) - oy
= n*(n”l Zi; Mz(t,') — M,) + n—*n“ S:‘l Mz(t,-)
+ ndn? Zl alty)? — f e dr)

+ n”(a2 — I:'nfl g a(t,-)-r)

-t /)



360 REINHOLD BAER

1 1
where one should remember the identity / (a(t) — @)’ dt = / at)? dt — d’.
0 4
But
n 2 n n
n? <a2 - [n’1 b a(t,)]) =nt (a -ty a(t,'))(a +nt) a(t,)) ,
i=1 =1 i=1
where the last factor on the right is bounded by a bound independent of n and
T.. Hence it follows that
1 2
n(E(s2) - M, — _[ (a(t) — a)’ dt> tends to 0, as n tends to infinity.

By a computation of great length and little interest one shows that

nB((s — B = o [(n — 1 ; M) + 4n(n — 1) ; My(t)at;)
— 4(n — 1) ,},;; Mi(t)) hZI_l a(ty) + 2[;1 M«}.(t,-)]2
= 0 = 20 +3) 3 Mae) + 4n* 3 Mat)alt)

— 8n i a(t;) hznl a(tn) M(tn)

i=1
n 2 =
+ 4 I:Z a(tj):l Z Mg(th)] .
i=1 h=1
It is readily seen that this expression tends to

1 1 1
M, + 4 j; My)a(t) dt — 4Msa — fo Mo dt + 4 fo Ma(t)a(t) dt

1
~ 8a [ aOM(t) dt + 4a° M,
0

and now it is clear how to complete the proof of our theorem.
CororLLArRY 1. If a(t) is constant and My(t) of bounded wvariation, then
1
lim nB((s" — M) = My — [ Myo) .
o

n—row

This is an almost immediate consequence of Theorem 3, since a(f) = a, if

a(t) is constant.
It has been shown in section 4 that d” is always a consistent estimate of M,

whereas s is a consistent estimate of M, if, and only if, a(f) is constant. Theo-
rem 1 and Corollary 1 offer a basis for comparing the efficiency of these two
statistics. Since

0 < My(t)? < M,(t) for every ¢
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(apart from trivial exceptions), we infer from Theorem 1 and Corollary 1 the

following fact.
CoroLLARY 2. If a(t) is constant and M (t) of bounded variation, then

oo B = M) _ | fo M,(t)* dt
nmre (@ — Mo)?) M,

and this expression is always positive and smaller than 1.

Thus we may say roughly that for large n the estimate s* of M is more efficient
than the estimate d”, in case both may be used.® We do, however, not offer
any information of the necessary size of n. Neither do we claim that for small
n it might not happen that d* gives a good estimate and s* a poor one.
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14 Tt has been pointed out before that s? is a consistent estimate of M if, and only if,
a(t) is constant, and thus the efficiency of s? and d? as estimates of M, may be compared only

if a(t) is constant.



