ON THE MEASURE OF A RANDOM SET. II

By H. E. RoBBiNs
Postgraduate School, U. 8. Naval Academy

1. Introduction. In a recent paper' the author derived general formulas for
the moments of the measure of any random set X, and applied the formulas to
find the mean and variance of a random sum of intervals on the line. In a
subsequent paper’ J. Bronowski and J. Neyman, using other methods, found the
variance when X is a random sum of rectangles in the plane, and raised the
question of finding the variance when X is a random sum of n-dimensional
intervals in n-space. This will be done in the present paper, independently of
.the work of Bronowski and Neyman, using the methods of (I). The correspond-
ing problem for circles in the plane will also be solved.

2. n-dimensional intervals, N fixed. Let the random set X be defined as
follows. Let A;, a; (the range of the subscript ¢ throughout this paper will be
from 1 to n) and § be fixed positive numbers such that a; < 26. Let R denote the
n-dimensional interval consisting of all points (x;, -+« , ,) such that 0 < z; <
A;, and let R’ denote the larger interval for which — § < x; < 4; + 6§ (and also
its measure II(4; + 2 §)). Let a fixed number N of intervals with sides a:
parallel to the axes be chosen independently, with the probability density func-
tion for the center of each interval constant and equal to 1/R’ in R’. The set X
is the intersection of the set-theoretical sum of the N intervals with B. The set
Y consists of those points of R that do not belong to X. We have identically

® X+ Y =R,

where capital letters denote either sets or their measures.
From (I), equation (15), we have

Ag Ay
@ B = [T [Ton, o, addon - daw,
where, setting r = Ila;, we have
r N
® P, oy m) = PriGm, o, meh) = (1= ) -
Hence
r N
4) E(Y) = R(l - E;) .

1H. E. RoBBINs. ‘‘On the measure of a random set,”” Annals of Math. Stat. Vol. 15
(1944), pp. 70-74. We shall refer to this paper as (I).

2J. BroNowski AND J. NEYmaN. “‘On the variance of a random set.” Annals of
Math. Stat. Vol. 16 (1945), pp. 330-341. We shall refer to this paper as (BN).
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From (1) it follows that

®) E(X) = R{l - (1 - R’—)}

From (I), equation (21), we have

(6) E(Yz) =.£A"~~-j;“.£4”-~j;“p(x], <t Ta,Yr, ...’yn)

.dxl dx”dyl ...dy"’
where
(7) p(xly"’)xn:yl:"' ’yn)=Pr((xly "”xn)eyand(yl) "‘,yn)EY).

It is clear from the symmetry of the problem that the distribution of ¥ will be
unchanged if we assume that for all 7, z; < y; . Hence, since there are 2" possible
sets of n inequalities each, we can write

Ay 4 Un U
7 2 —3 4 LRI TR Y . o 0 .« o
®) B =2 'l 'i fo [* pdo - dan gy - dyn.

We now introduce the new variables of integration

9 U; = T, Vi =Y — T
for which
(10) a(ul’...’u”,vl’...,v”)_l.

a(xl’ cee 3Ty, Y1y oo ,yn) a
In terms of the new variables we have

N
(1 - %;) if v; > a; for some 1,

(A1) p = f(v1, -+- ,v5) = N
(1 _ 2}:1(1‘:_&)) if v < a for alli.

RI

Equation (8) now becomes
Agy Ay Ap—vn 41—y
2 == » LRI . o LU CRCIR
E(Y") =2 jo fo £ fo £ duy -+ dundoy -+ - dvm

Ay Ay
=2"fo fo TI(As — 0) dvy -+ dva.
Let z; = min(a;, A;). Then from (11) and (12) we obtain

Sn 3 — — N
E(Yz)=2"£ ...,L‘(l—zi__%g‘__l.)> H(A""W)df)],"’d”.

(13) + 2"(1 - ir)" {_[)A :' T(As — vg) dvy -+~ don

(12)

RI

- j:',... foﬂn(A‘ — vg) dvy e dv,.}.
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Let the symbol [z], as in (BN), be defined by
zifxz >0,

(14) [x] = ¢ |

0ifz < 0.

In the integral in the first line of (13) we introduce the new variables of integra-
tion w; = a; — v;, while in the two integrals in the second line we introduce
the variables s; = A; — v;. Theresult is

on o 2r — Tw,\"
E(Y?) = 2" o <1—___'>
o lan—dn] (ay—4,] R’

’H(w; + A; - a,') d'u)1 e dwn

2\ ¥ Ay Ay
+2"(1—-——,) f Is; ds; - - - ds,
R ) )
Ag 4,
__f ...f Hsidsl...dsn}
[4n—aa] (41-a4]
an ay - R N
- [T (1_21__.,11@0-)
{an—A44] la1—4,] R

‘Il(w, + 441' _ ai) dwl oo dwn

(15)

R/

From (1) we see that ok = E(X?) — E*(X) = E(Y®) — E*(Y). Thus from (4)
and (5) we have

an “ 2r — Tw,;\"
2 n i
ok =2 f f <1 - ——>
x [an—4,] [e1—4,] R,

H(w, + Ai _ ai) dw1 e dw"

+ (1 - ﬁ)” (AT — (4] — [4; — a])}.

1 N
(16 + (1 - %’i) (A% — (4} — [4: — a]))

2N
2 r

3. n-dimensional intervals, N variable. Nowlet X and Y be defined as before
except that the number N is taken as a random variable, capable of assuming the
values 0, 1, - - - with respective probabilities po, p1, -+ -, and with generating
function

a7) ROED WS
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Then from (5) we have

18) E(X) = ;prR{l - (1 - R;,)N} = R{l - ¢(1 - 1%)}

while from (15) we have

an a1 — A
ox = E(Y") — E\(Y) = 2”[ f[ ¢(1 L) R,Hw')

[ap—4,] a1—4;]
(19) O(w; + 4; — a;) dny -+ - dw,
+ ¢(1 - %", (M4} — (4: — [A; — o)} — R* ¢’ (1 - R’_)

In particular, suppose that, as in (BN), N has a Poisson distribution with a
parameter A,

(20) py = . QBT
so that

(21) olt) = &7,
Then (18) becomes

(22) E(X) = R{1 — ¢},

while (19) becomes
2 _on o [ . “ < ()\H’ws)lg}
Ix = 2 ¢ ~/;an—An] '/;01—:411 ; N!

- {(w; + A; — a;)} dwy - - - dw,
+ ¢ (mA? — m(4} — [4: — a])} — R* ™.

Integrating term by term and simplifying the resulting expression, we obtain
finally

()

2 D LS = (xr))v
=2 {N! [+ DV + 2
: H{(N + 2)A¢ - a; + [a-' - A.'] (1 - %)NH}}-

]

(24)

4. Circles in the plane. Let the random set X be defined as follows. Let
Ay, Ay, a, and & be fixed positive numbers such that 2¢ < min (4,, 4., 25).
Let R denote the rectangle consisting of all points (x; , z2) such that 0 < x, < 4,,
0 < z, < A;, and let R’ denote the larger rectangle for which — 6 < 2, < 4,4 3,
—8 <13 < A; + 8. Let a fixed number N of circles with radii ¢ and areas
b = ma’ be chosen independently, with the probability density function for
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the center of each circle constant and_equal to 1/R’ in R’. The set X is the
intersection of the set-theoretical sum of the N circles with R. The set Y con-
sists of those points of R that do not belong to X. Equation (1) holds as before.
The analogue of (4) is

25) E(Y) = fo " fo @, 22) day iy = (1 _ le-,)N,

while (8) becomes

Ay pAy ay2 pYL
(26) EY") = 4]; fo _/; _[) (21, T2, Y1, Y2) dz1 dx2 dy1 dy: ,

where
@7 p(x1, T2, 1, ¥2) = Pr((m, 2)€Y and (y1, y2)eY).
Introducing the new variables (9) we obtain the analogue of (12),

(28) E(Y) = 4 fo " fo {4 = )y — o0) doy dvs

where, setting r = (v + ),

N
(1 —%ﬁ) ifr > 2a,

(29) f(w1,v2) = j
1 — 2b — 2d arccos( )—I— \/4a2—1'2 ifr < 2.
RI
Introducing polar coérdinates r, 6 in the v, , v,-plane and carrying out the obvious
integrations, we obtain

B(YY) =(1 —%2) {R +§ ‘(A1+A) — 8a* —4bR}
(30) + 84’ f (xRt + 4a* £ — da(d; + A)E)
o
( 2b — 2a’ arccos t + 2d° t\/1 — tz)"
1= . dt.
R

If now N is a random variable with generating function (17), then (25) becomes
(3D) E(Y) = (1 - R,)

and hence

(32) E(X) = R{l — e (1 _ Rf’—)}
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while
ot = E(X* — EXX) = E(Y") — EXY)
= ‘P(l - %—l;){ '+ %gas(Al + As) — 8a' — 4bR}
1
@3) — R (1 - Rl??) + 8d’ l (xRt + 4’ & — 4a(4: + A)f)

2b — 24’ arccos t + 2d° t4/1 — &
o1 - =

dt.



