OPERATING CHARACTERISTICS FOR THE COMMON STATISTICAL
TESTS OF SIGNIFICANCE

By CrARLES D. FERRIS, FRANK E. GRUBBS, CHALMERS L. WEAVER
Ballistic Research Laboratory, Aberdeen Proving Ground

1. Summary. Methods making possible quick calculation of operating char-
acteristics or power curves of common tests of significance involving the x’,
F, t, and normal distributions are presented. In addition, a comprehensive set
of curves illustrating graphically the power of each test for the 5%, significance
level are included. We are interested in the power of: (1) the x>-test to deter-
mine whether an unknown population standard deviation is greater or less than a
standard value, (2) the F test to determine whether one unknown population
standard deviation is greater than another (one-sided alternative), and (3) the
t-test and normal test to determine whether an unknown population mean
differs from a standard or two-unknown population means differ from each other.
Such operating characteristics have application for the quality control engineer
and statistician in the design of sampling inspection plans using variables where
they may be used to determine the sample size that will guarantee a specified
consumer’s and producer’srisk. On the other hand they are of use in displaying
the power of a test if the sample size has already been set. Finally, they area
necessary adjunct to the proper interpretation of the common tests of significance.

2. Introduction. In the application of the common statistical tests of sig-
nificance there has been a great need for readily accessible information on the
power of the test employed to distinguish between the null hypothesis and perti-
nent alternative hypotheses for given sample size.. In this connection, two im-
portant applications arise. On one hand it becomes important for the sampler
to know, for a given sample size and critical region, something about the power
of the test in rejecting the stated hypothesis when some alternative hypothesis is
true. On the other hand, if the sampler wants a given degree of assurance in
rejecting the null hypothesis when a particular alternative is true, he would like
to know the minimum sample size which would accomplish this when the prob-
ability of rejecting the null hypothesis when true is given. In particular, the
need for such information arises most frequently in setting sample sizes to dis-
tinguish effectively, on the basis of single sample results, between (1) population
standard deviations and (2) population means. If the sample size has already
been set, as is the case with most specifications, quick information on whether
or not it is large enough to keep the risk of accepting poor material down to a
reasonable figure is highly desirable. Such probabilities will be recognized, of
course, as the Type I and Type II errors of the Neyman-Pearson theory. Such
risks must be given proper consideration in the interpretation of a significance
test or in designing the provisions of an acceptance test.
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OPERATING CHARACTERISTICS 179

Needless to say, the appropriate expressions for the power functions of the
x*-test, F-test, normal-test, and ¢-test have been derived at one time or another
in the literatuer. However, insofar as the practical statistician or quality con-
trol engineer is concerned, such information has not been employed to advantage
widely since no informative graphs or extensive tables of power functions for the
common statistical tests of significance have been presented. Due to the prac-
tical importance of questions of this type, the authors believe there is need for
operating characteristics or graphical power functions of the common statistical
tests of significance. This paper supplies such a need over a useful range of
sample sizes and alternative hypotheses for the 5%, significance level.

3. Definitions. In the following account, we will refer to one or both of the
normal populations, i and w, . 'We will let x; be a variate from r, whose expected
value or mean is u; and standard deviation ¢; . By n; we will mean the number
of observations drawn at random from m, and our sample statistics will be
defined in the usual fashion:

n1 n1

&= Zl: xlinl, s = Z (1 — %)%/ (m — 1).

1
Similar definitions apply to the normal population 7 with the appropriate
subseript for sample statistics and population values. In dealing with a single
population we will drop the subscripts from the sample statistics.
We also define

o = a standard or arbitrary value of the standard deviation,

a = a standard or given level,

ni n2
Zl: (1 — 11‘31)2 + 12 (2 —3'72)2
m 4+ ny — 2

when two normal populations
are encountered.

H, will be used to denote the null hypothesis and H; any one of a set of alter-
native hypotheses. The probability of rejecting the null hypothesis H, when
it is true (Type I error) will be denoted by «, and the probability of accepting the
null hypothesis when some alternative hypothesis H; is true (Type II error)
will be denoted by 8.

2
S12 =

2
4. Power function of the x-test. The statistic x* = ("—0211“’- (dropping

subscripts of sample statistics) is used to accept or reject the hypothesis that the
standard deviation, o1, of the normal population sampled is some specified or
given value, o.

Our hypotheses are
Ho: 0L = 0
H,: 01 = o, A > 0).
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A. To determine whether or not a1 > 0. We choose a significance level, a,

2
and compute x* = (ﬁ—?l)—s. If xX* > x&, where the percentage point « is
determined by
) (zz:"j)/;) f (n0i2 iz g

we reject Hy and conclude that oy > o.
To set up the power function we note that:

If H, is true
(n 1)8} 2 _
{ o > Xa = a
If H, is true
2
Pr{m——a-z—lk}>xi=]—ﬂ, A —-—B=qaifx = 1).

However, since

— 2
Pr{%—uﬁ >x“{-a}= 1-5

1

— 2
Pr{@-—?—p—s— > )\"xf-o} =1-2

X%

xi-s
Therefore, for a given significance level, « (Type I error), and various Type II
errors, B, we can make use of the Tables of Percentage Points of the x’-distribu-
tion [1] and compute enough of the points (A, 8) to plot the power curves de-
picted in Fig. 1. The Type I error, a, has been set at the practical level of .05
for Fig. 1.
B. To detect o1 < 0. We compute
s (n—1)¢
=22

2

or

we have the relation

)xzxf_p=xf, or A=

o

and if x* < x}—« we reject Hy , concluding that o1 < o.
By reasoning similar to that in A. we arrive at the relationship

2
Xi-a = N'x3 or A= 1/"1—;".
XB

Again, by use of the Table of Percentage Points of the x*-Distribution the operat-
ing characteristics of Fig. 2 are obtained. We have chosen the practical level of
a = .05 for Fig. 2.
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Example: A Rifle Association is purchasing small arms ammunition for
match purposes. It is the desire of the rifle club that the dispersion in muzzle
velocity of a lot of ammunition intended for match purposes be kept down to a
practical minimum. Acceptance or rejection of an ammunition lot must, of
course, be made on a sampling basis since the ballistic acceptance test is de-
structive in nature. Moreover, for practical reasons acceptance of a given lot
is to be on the basis of a single sample. The Association specifies that they are
not willing to accept more than 59, of the lots whose standard deviation in
muzzle velocity is 6 ft./sec. The ammunition manufacturer agrees that he will
accept these terms provided not more than 59 of the lots whose standard devia-
tion in muzzle velocity is 4 ft./sec. will be rejected. Under these agreements,
it is desired to know what sample size is necessary to provide the stated assur-
ances for the Rifle Association and the ammunition manufacturer.

In this problem, @ = .05, 8 = .05, and A = 1.5. Referring to Fig. 1, we
find the required sample size is approximately 35.

On the other hand, if a sample size had already been set, the appropriate
curve in Fig. 1 could be examined to determine whether it provided sufficient
protection against the acceptance of inferior ammunition.

6. Power function of the F-test. In discussing the power function of the
F-test we will focus our attention on the problem of comparing the standard
deviations of two normal populations.

A. To determine whether or not the standard deviation, o1, of one normal
population is greater than the standard deviation, ¢; , of another normal popula-
tion. We choose a significance level, o, and compute F = si/s;. If F > F,,
where the percentage point F, is determined by

r[%(nl + ng — 2)] ('nl _ 1)}("1—1) (n2 — l)i(n:—l)

I3 — DIT3(ne — 1)]
(2) © u}(u;—S)

' Fa [(nl - l)u + Nng — 1]{("14—“2-2)

du = a,

we conclude that a1 > o3.
Our hypotheses are

Hy: 01 = 02
Hy:o1 = Aoz, A > 1).
To set up the power function of the F-test we note that:
If H, is true
Pr{si/ss > Fa} = a.

1 This example is used to illustrate the use of the power of the x-test and is not advo-
cated as a most powerful sampling technique. (See ref. [10]).
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If H, is true
Prisi/ss > F} =1—-8, (1—-8=aif\=1).
However, since
si/al
Pr{éfg—/;g > Fl_p} =1-5
or
Pr{si/s; > N'Fig) =1 — B,

Fo
F 1-8 '

Therefore, for a given Type I error, «, and various Type II errors, 8, we can
make use of the Table of Percentage Points of the F-Distribution [2] and com-
pute sufficient points (A, 8) to plot the operating characteristics depicted in
Figs. 3, 4, and 5. In these figures, a has been set at the practical level of .05.

It should be emphasized that the operating characteristics presented in this
paper are applicable only when one is interested in the one-sided alternative that
g1 > ozand not oy < o2. Under these circumstances, the exact formation of the
F ratio will be set beforehand and will not depend upon test results (for example,
placing the greatest mean square in the numerator). In those cases where one
is interested in the two-sided alternative, a two-tail F-test such as described by
H. Scheffé [3] should be used. It is hoped that at a later date operating char-
acteristics of such a test calculated in a manner similar to the example in [3]
will be presented.

Example: It became necessary for a manufacturer to make a choice between
a new type casting and one produced under standard design practices. One of
the bases of comparison was dispersion in tensile. strength. It was considered
that if the standard deviation of the standard casting were larger than the new
type, definite preference should be given to the latter. When the question of a
practical criterion for rejecting the standard casting was considered, it was
decided that if its true standard deviation in tensile strength were actually 1%
times that of the new type there should be a 909, chance of rejection. It would
be of little practical importance to detect any ratio less than 1} in this particular
case. It was also decided that the 59, significance level would suffice insofar
as rejection of equal quality was concerned. A preliminary sample size of 20
was selected, and the question arose as to how well a sample of this size gave the
protection desired.

The question can be answered immediately by reference to Fig. 3 (here si
is computed from the standard casting data, of course) where it is seen that a
sample size of 20 will fail to detect the stated difference 479, of the time. In
order to achieve the desired protection, it is seen at once from Fig. 3 that a
sample size of over 50 will be necessary. The exact sample size, determined
with the aid of the formulas above, is found to be 54.

we have the relation N’F,_s = F,or A =
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B. Analysis of variance. We shall consider the analysis of variance layout
where a sample of n items is drawn from each of m normal populations with
common variance ¢°. It is required to decide on the basis of the sample results
whether or not there is any variation among the true means of the m normal
populations sampled.

Let x:; be the jth item drawn at random from the ith population,

. _ 1y -
B =-2 wy, and T =
n j=1

The F-test utilizes the comparison of the variation among the sample means
(external variance) with that among the items within the samples (internal
variance) in order to test the equality of population means by making use of the
ratio

n i (& — £)’mn — 1)
F=-3Z .
Z: (xs; — 57-')2 (m — 1)

L)

If F > F., where F, is defined as in 5.A., we conclude that the population
means are not equal.

In our approach we will assume that the m true lot means represent a sample
from a super-population, also mormal, with variance equal to 6°%°. Since the
sampling variance of the means is ¢’/n, the total variance among the sample
means equals

@/n + 6" = No’/n, (N =1+ nb).
Hence, our hypotheses are
Hp:0=0
H,:60 > 0.

Since F/A’ follows the F-distribution with m — 1 and m(n — 1) degrees of
freedom the operating characteristic, i.e. the probability for various 8 of accept-
ing H,, may be obtained from the curves already graphed by setting n, = m,
ne=mnm —m+ 1,and \* = 1 + né’.

In the design of experiments when the number of populations is indefinite
(for example, daily tests) and the total sample size mn is limited, the above
procedure will enable one to determine what values of m and » give the most
powerful operating characteristic for the given amount of sampling. For
example, for mn = 24 operating characteristics for all possible pairings were
computed and charted. They were observed to cross one another, each combi-
nation in turn becoming most powerful for a given interval of §. The following
table gives the best pairings for various intervals of 6:
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m n 0
2 12 .00- .32
3 8 32— .60
4 6 .60- 91
6 4 91-1.37
8 3 1.37-2.50
12 2 2.50-

In contrast to the above discussion, mention should be made of P. C. Tang’s
approach [4] to the power function of the analysis of variance. The basic differ-
ence lies in the method of expressing the alternative hypothesis. Tang expresses
it in terms of the variance of a finite number of population means. We express
it in terms of normally distributed population means. We believe our approach
has considerable practical value in control chart analyses where we are interested
in the quality of the flow of production of a large number of lots. In addition,
our approach obviates the difficulties imposed by the non-central x*-distribution.

6. Power function of the normal test.

A. The statistic u = \ﬁ%;q« is used to accept or reject the hypothesis
1

that the mean, p, of the normal population sampled, is some specified standard
level, a, when the population standard deviation is known (for example, from
past data).

Our hypotheses are

Ho:l.t=a
leln—al= X0'1,()\>0).

To test the hypothesis u = a, we choose a significance level, a, and compute u.
If | u| > ua, where the percentage point, 4, , is determined by

1 +u¢ -} 2
we reject Hy and conclude that p 5 a.

To set up the power function we note that:
If H, is true

Pri—u. <u < 4t =1—«
If H, is true

Pr{—ua<_\ﬁl(‘i——_~a)<u“}=ﬁ, (1—ﬁ=aif)\=0),
o1
= Pr{—ua+)\\/7_z < \—{11(%:-—#—) < ua+>\\/ﬁ}
1

e —aj
a1 '

where A =
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In the latter expression the statistic M is normally distributed with

o1
zero mean and unit variance. The required probabilities are found easily from
tables of areas under the normal frequency curve. By computing enough
points (A, 8) the operating characteristics depicted in Fig. 6 were constructed.

It should be noted that the 8 corresponding to a pair of values n’ and A\’ may
be obtained from any other operating characteristic by use of the relation A =
NA/n’/n. For example, if it is desired to find the Type II error for a sample
size of n’ = 12 and N\’ = 1, select any operating characteristic, say for n = 3,
as the reference curve, compute A = 14/12/3 = 2, and find froni the curve for
n = 3 that 3 = .07. In Fig. 6, however, individual operating characteristics
are plotted for convenience and to provide a picture of the comparative effi-
ciency of various sample sizes.

Ezxample: Pressure-measuring instruments are being tested against a standard
level. It has been decided that instruments whose true mean reading is as
much as 10 pounds per square inch away from the standard level should be
rejected 959, of the time. On the other hand only 57, of instruments whose
true mean reading equals that of the standard should be rejected. From past
data, it is known that all test instruments of the type being considered have a
stable standard deviation of 5 psi. If rejection or acceptance is to occur on the
basis of a single sample and the normal criterion of significance, what sample
size should be chosen to accomplish this purpose? Referring to Fig. 6 with A =
10/5 = 21t is seen that a sample size of 4 provides the required assurance.

B. In sampling two normal populations m; and m , the statistic

- T — 2,

\/af/nl + o'g/nz
is used to accept or reject the hypothesis that uy = p2. For generality it will be
assumed that the population standard deviations ¢; and ¢2 may not be equal,

although they are known accurately.
Our hypotheses are

(1

Ho: py = po
Hy:|p— | = Aoy

Significance is determined in the same manner as in 5.A., and the power
function is set up in identical fashion. The value 8 is found to be the area
under the standardized normal curve between the abscissas.

nyNe
e+ A —are
e 1/192 1+ N
where o2 = koy. The value of 8 may easily be read from Fig. 6 for any X\, n;,
72, and k by selecting the curve for a convenient sample size, n, on Fig. 6 and

taking \ __
= 1/__1_2__
M= king + ng’



192 C. D. FERRIS, F. E. GRUBBS, AND C. L. WEAVER

7. Power function of the f-test.
A. The statistic ¢ = M is used to accept or reject the hypothesis that

the mean, u, of the normal popu]atlon sampled, is equal to some specified level,
a, when the population standard deviation, oy , is unknown.
Our hypotheses are
Hy:p=a
Hy:|lp—a]=2no,(A>0).
In order to test the hypothesis u = a we choose a significance level, &, and com-

)

pute the statistic ¢ = m:——— . If [¢| > t., where the percentage point,

la , is determined by

P(n/z) Fiq x2 —n/2
) Il(n — IvVa—1vr [ < - 1) dw=1-a,

we reject Hy and conclude that p # a.
To set up the power function we note that:
If H, is true

Pri—t. <t< 4t} =1—a.
If H, is true,
Pri—t. <t <t =8 (1 —p8=uwif\=0).

However, we have the identity
Pr{—ta;+ M7 < ‘/”(‘z i Py + x\/n} Pri—t. <t < +ta}
1 1

|u—a
a

- 2
denoted by say h(s/e1) or, using the notation of section 4, h( /‘/ - i 1), and

evaluated as the area under the standardized normal curve between the abscissas

indicated. Then
= ® x
l h</‘/n -1

where f(x”) is the probability density function of x* for n — 1 degrees of freedom.
This is one method of evaluating 8 and it was used for calculating the operating
characteristics for n < 5.

It has been noted that such a formula had been employed by Neyman and
Tokarska [6] in calculating Type II errors where only one tail of the t-curve is
used as the region of rejection. Probabilities calculated in this manner are

s
where A = Hence, for any fixed o the above probability may be
1

76 a6
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provided by Neyman and Tokarska for degrees of freedom n = 1 to 30 and Type
I errors of .01 and .05. As soon as the area in one tail of the non-central {-dis-
tribution becomes negligible these curves are equivalent to the test treated
herein with an o of .02 and .10 respectively. An idea of the critical values of A
at which this occurs may be obtained from a table in a succeeding footnote in
which they are quoted for & = .05. The values are surprisingly small, such that
almost all of Neyman’s figures can be interpreted for a two-tail region of re-
jection.
Using C. C. Craig’s development of the non-central ¢ [7] we obtain®

g = P,,{_ta < V@& = w)/on+ vk _ +ta}

8/0'1

_ ime s (GnNYY in — 1) - ta ]
e (TR O P

r=0

where I(p, ¢;z) represents the Incomplete-Beta Function Ratio [7]. This may-
be conveniently used for those values of n where the necessary values are obtain-
able from Tables of the Incomplete-Beta Function ratio [8] and for small values
of N\ where the above series converges rapidly.

The method actually used for n > 4, however, made use of the tables pre-
pared by Johnson and Welch [9]. Replacing their A by = to avoid confusion
with our notation, these tables give values of = tabulated against f, ¢, and e such
that

z+ 34

P T{t = ‘\/% > to} = €
where z is a normally distributed variate with zero mean and unit variance, fw
is distributed according to the x’-distribution with f degrees of freedom, and
8=t — 71+ 2/2f. We want ]

B=1—Pr{t < —t,} — Pr{t > ta}.

For those values of X and n for which Pr{t < —t.} is negligible® we can, for
any given e, take {, = t, and f = n — 1 and read = from the tables, then deter-

2 Tt should be noted that Craig’s formula as published is in error in having 3(r 4+ 1) as
the parameter in the incomplete beta function instead of r + §.
3 Values of X\ for which Pr{t < —t.0s} = .005 are listed below.
f=n-—-1 A
.34
.30

._.
S R8BS cowuomn
&
3
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mine 6 and finally X from the relation A = §/4/n . After computing 8 = 1 — ¢,
the point (A, 8) on the operating characteristic may be graphed. At the few
places where Pr{t < —t,} is not negligible and g is needed we can for a given A
take

_ o — o
TT NI ens

and then by reading = for various values of ¢, f, t, make an inverse interpolation
for € thus setting values for Pr{¢ > —¢,} and Pr{t > t,}. Finally

B = Pr{t > —t.} — Pr{t > +ta.}.

It was found that for n > 10 a good approximation for computing operating
characteristics is given by

B =Pr{—ta + AM/n <t < +ta + \/n}
in which the variable ¢ is distributed as central ¢ with n — 1 degrees of freedom.
This formula proved to be quite-useful in preparation of the operating character-
istics for the i-test.

Fig. 7 presents operating characteristics of the t-test calculated by these
methods. It should be noted that in using the i-test, alternative hypotheses
are expressed as so many multiples of the unknown population standard devia-
tion away from the level stated in the null hypothesis. In some applications
the alternatives may be naturally so expressed. In many applications, how-
ever, it may be desired to control the distance 4 — a regardless of the stand-
ard deviation of the lot sampled. In this case, one could place confidence limits
on the estimate of ¢, determine the A value corresponding to each estimate, and
finally obtain limits on the sample sizes or risks involved.*

B. For the case of two normal populations, thqe statistic

t jl - jz
T sV 1/m + 1/m
is used to accept or reject the hypothesis that u; = w, when the two normal
population standard deviations are unknown but equal to say, ¢ .
Our hypotheses are

Hy:mw = po
Hy:|lp— | =2na.
Significance is determined in the same manner as in par. 6.A., and, by reason-
ing similar to that in the preceding section, it is found that g8 for a given M can
be read from Fig. 7 by taking

VoY m+ n

4 For a test of this nature in which the power of the test depends only on the absolute
value of the distance u — a see [10].
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andn = n; + ny — 1. Before a statistical test of this nature is applied the data
should be examined to verify consistency with the assumption that oy = ;.

Example: An analysis of the difference in tensile strength between two types
of castings is being conducted. A sample of 10 items is selected from each type
of casting and the t-test employed to establish superiority of one over the other.
Experience has shown that the variability in tensile strength for one type of
casting is comparable to that of the other type. If « is set equal to .05, what
percentage of the time would our significance test fail to detect a superiority of
one standard deviation in tensile strength? n = 10 + 10 — 1 = 19 and A =
.513. Referring to Fig. 7 for this A and n, it is seen that the percentage 8 is
approximately 45.

In this paper we have presented power curves or operating characteristics of
the common significance tests employed but a single sample of items. The
power of the tests obtained here does not represent the limit that can be obtained
for the average amount of inspection performed, say, over many consecutive
lots. Tests, sequential in character [11], have been shown to be much more
efficient. Nevertheless, single sampling is often the only practical procedure
available. Again, the data may be brought to the analyst as single sample
results collected supplementary to other purposes or prescribed by a standard
procedure. Finally, in performing a significance test, it is quite important to be
able to give constructive advice when the data indicate practical differences
although no statistical significance is found.’?

Although sequential tests using variables have been devised, no investigation
of double sampling schemes for variables similar to the Dodge-Romig [12]
plans for attributes has, as yet, been designéd with the exception of [9]. It is
believed, however, that such plans would have considerable application for
industry in combining efficiency with practicability.

The graphs of the operating characteristics in this report have been made by
calculating a sufficient number of points to draw them in by use of French curves.
Considering this method of plotting slight error should be allowed for in reading
probabilities of acceptance from the graphs, especially where the curves are
steep.
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