AN APPROACH FOR QUANTIFYING PAIRED COMPARISONS AND
RANK ORDER!

By Louis GUTTMAN
Cornell University and War Department

1. Summary. Research for the Army demobilization point system evolved
a new approach to paired comparisons and rank order. Each of N individuals
compares or ranks n things; the problem is to determine a numerical value for
each of the n things that will best represent the comparisons in some sense. The
new criterion adopted is that the numerical values be determined so as best to
distinguish between those things judged higher and those judged lower for each
individual. Least-squares is employed in the analysis, and the solution appears
in the form of the latent vector associated with the largest root of a matrix ob-
tained from the comparisons or rankings.

This approach applies to the conventional problem of ordinary comparisons,
the numerical solution being easily abtainable by simple iterations; the conven-
tional use of hypothetical variables and unverified hypotheses is avoided. The
Army point system is an example of a new and more complicated class of prob-
lems; the same principle for thé solution applies here, only more details occur
in the derivations and computations.

2. Introduction. The problem of paired comparisons arises when it is desired
to obtain numerical values for a set of n things, with respect to one characteristic,
such that these values will represent the judgments of a population of N in-
dividuals.

One procedure for obtaining the judgments is to have the individuals compare
the things two at a time and to judge for each comparison which of the two
things should be given the higher rank. An alternative procedure is to have
each individual rank all the n things simultaneously. Such a ranking implies
judging all the n(n — 1)/2 comparisons at once; hence, the two procedures are
substantially. equivalent. Two noteworthy differences between the procedures
are: (a) comparing two things at a time allows inconsistencies to appear within
judgments of an individual, and (b) it is sometimes harder in practice for people
to judge n things simultaneously than to compare them two at a time.

The problem of quantification, of course, is identical for both procedures, so
we do not distinguish between them in this paper. The judgments vary from
person to person (and possibly within a person), and the problem is to determine
a set of numerical values for the things being compared that will in some sense
best represent or average the judgments of the whole population.

1 Adapted from Report D-3, ““An approach for quantifying paired comparisons,” Re-
search Branch, Information and Education Division, Headquarters Army Service Forces,
Washington, D. C., 1945.
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In some situations, the things being compared may be single items or objects;
this we shall call the case of ordinary comparisons. In other situations, the
things may be combinations of items or objects.

This paper is devoted to the presentation of a general approach to quantifying
comparisons or rank orders, with particular application to ordinary comparisons
and to the comparison of combinations of two things. It seems to differ from
previous approaches in at least two important respects: (a) it is based on but one
simple principle, namely, that the quantification shall be the one best able to
reproduce the judgment of each person in the population on each comparison; and,
as a consequence, (b) the approach yields solutions not only to the traditional
case of ordinary comparisons, but also to more complex cases that do not seem
to have been discussed previously.

An example of a major practical use of this approach is with respect to the
demobilization score card of the United States Army. The problem was to
determine the number of points to assign each of the variables on the score card
according to the opinions of the soldiers themselves. The research on this was
based on a form of paired comparisons more complicated than the ordinary one,
and had additional complications of curvilinearities of various sorts in the data.
Our approach handles such problems as well as the problem of ordinary com-
parisons. ;

Let us describe the score card problem in somewhat more detail. In a survey
of enlisted men throughout the world by means of a questionnaire administered
by field teams of the Research Branch, it was found that there were five variables
that the men thought should receive consideration on the score card to determine
order of demobilization: length of time in the Army, length of time overseas,
amount of combat, age, and number of children.

The problem now was to determine how much weight to give each of these
variables in obtaining total scores. According to ordinary paired comparisons,
one would ask, for example, “Who should get out”first after the war: a man
who has two children or a man who has been in two battles?”” But respondents
refuse to judge such a comparison because the battle experience of the first man
is not specified, nor is the number of progeny of the second man, so that there is
insufficient basis for judgment.

Therefore, in the actual research, judgments were asked on each of ten com-
parisons put in the following form:

“Here are three men of the same age, all overseas the same length of time.
Check the one you would want to have let out first:

—— A single man . ... through two campaigns of combat
—— A married man with no children . . .. through one campaign of combat
A married man with two children . ... not in combat.”

Each variable was compared with every other one in this fashion.

The equations were derived for computing the relative number of points to
assign to each month in the army, each month overseas, etc., which would be
most consistent according to our principle. These are essentially the equations
developed in section 6 of this paper.
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The results showed strong curvilinearities in the men’s judgments. Amount
of combat received one amount of emphasis when compared with age, and another
amount of emphasis when compared with number of children. Since the score
card would be too complicated in practice if curvilinear scoring were used,
equations were derived for the linear scoring scheme that would be most con-
sistent according to our principle. These are essentially the equations derived
in section 7. The weights arising out of the research were computed from such
equations.

The variable age received a slight negative weight, which justified dropping
it from the score card. The weights the Army finally adopted for the remaining
factors were modified from the research weights, but yield essentially the same
results as the research weights. Demobilization scores obtained from the one
system of weights correlate very highly with scores obtained from the other.

It can now be revealed that the Army’s modification was essentially to reverse
the weights for children and battles. In subsequent attitude surveys on how
well the soldiers liked the point system [8], a major complaint was found to be
that battles got too little weight compared with babies!

3. The basic principle. Our basic principle in deriving numerical values—let
us call them “z-values”—for the things being compared requires that the z-
values of things a given person judges higher than other things should be as
different as possible from the z-values of the things he judges to be lower than
other things. This will be achieved if we make the z-values of things judged
higher as homogeneous as possible among themselves, and the z-values of things
judged lower as homogeneous as possible among themselves, for each individual.
In the language of analysis of variance, our principle calls for minimizing the
variation ‘within individuals, compared with that within the group as a whole.?
The resulting z-values will tend to be the best for reproducing the judgment of
each individual on each comparison with a minimum overall proportion of
errors of reproduction [3, pp. 342-343]. The smaller this overall proportion of
error, the better the quantification represents the data. Least squares is used
for convenience for measuring variation in deriving the equations.

The previous literature, on ordinary paired comparisons,’ seems to have
concentrated largely on the problem of estimating the differences between means
of hypothetical variables assumed to underlie the judgments. Thurstone has
shown that by using assumptions of normality of distribution, equality of vari-
ances, and zero correlations among hypothetical variables, it is possible to
estimate relative distances between means for some kinds of data.

2 This principle for quantification was suggested by previous work on scale analysis;
see [3]. This theory has been developed further by the definition of a perfect scale in
[4]. The equations for the perfect scale have interesting properties that may be related
to paired comparisons; these equations are being prepared for publication. The referees
have called my attention to related work on quantification by R. A. Fisher in (1, p. 283].

3 A good survey of the previous work, including that of Thurstone, is given in [2, pp.
217-243]. For more recent work, see [7].
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The problem of estimating differences between means is not identical with
that of reproducing individual judgments. For example, it can be shown,
within the same framework of hypothetical variables conventionally used, that
if variances are unequal and/or correlations are unequal then the means of the
hypothetical variables are not in general the best quantification for reproducing
individual judgments; the principal axis of certain product-moments of raw
scores is the best quantification. It is in the special case where variances are
equal, and where correlations are equal—not even necessarily equal to zero—
that the principal axis is the set of means. Proof of this is given in the appendix.

The approach of this paper does not use hypothetical variables, but inquires
directly as to what numerical values can be derived from the observations that
will best reproduce those observations.

In the next section is treated the case of ordinary comparisons. The more
complicated problem of the demobilization score card is formalized in section 5,
and the equations for its unrestricted solution are derived in section 6. Since
the unrestricted solution brings out curvilinearities that may be present, and
since the score card in practice required a linear scoring scheme, equations for
the most consistent linear quantification are derived in section 7. These are
essentially the equations used in the research on the weights for the score card.

The appendix shows a distinction between the conventional principle of
estimating mean differences of hypothetical variables and the present principle
of representing the comparisons of each individual.

4. The case of ordinary comparisons. Paired comparisons as treated in the
literature seem concerned largely with the ordinary case where separate things
are compared, rather than where combinations of things are compared. Our
principle covers the ordinary case as well as more complex cases, and we shall
treat the ordinary case first since it involves less details.

Let Oy, 0., -+, O, be the n things to be compared, where the assigning of
subscripts is arbitrary. Each of N individuals is asked to make judgments of
the form that O; is higher than (or lower than) Ox. For convenience, we assume
the rules of the experiment to exclude judgments of equality. We shall also
assume that all people compare all the pairs. Hence, there are N sets of n(n —
1)/2 comparisons. Considering each comparison as comprising two judgments—
one of “higher than” for one object and one of “lower than” for the other—there
is a total of Nn(n — 1) judgments in the experiment.

The judgments of all the individuals on all the comparisons can be represented
compactly as follows. Let

1 if individual < judges O; > O
4.1) e:ir = 0 if individual ¢ judges 0; < O
0j =k

The ranges of subscripts, whether free or dummy, will always be:
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“2) i=12-,N
j’k=1)2y"')n’

so that the ranges will not be explicitly stated again.

Definition (4.1) implies that if e;;x = 1, then e;; = 0, and that
(4.3) e + eni = 1, (G = k).

Let fi; be the number of things individual 7 judged to be lower than O; , and
1et g:; be the number of things he judged to be higher than O;. Then

(4.4) Ji = ; Gk,  Gi = kE €iri -

From (4.3) and (4.4), we have

(4.5) Jis+gi=n— 1L

Let F be the total number of comparisons made by each person; then
(4.6) F=nn-1)/2= ka..,, = }";‘, Gik -

Let ¢ be the number of times each O; was judged in the whole experiment, and
let C be the total number of judgments in the experiment:

4.7) c=Nn-1) = Z (fii + ¢i1), C = Nn(n — 1).

Both ¢ and C count each comparison as two judgments, one of “lower than”
and one of ‘higher than.”

The means and variances to be considered are defined as follows. Let z;
be the numerical value to be derived for O; on the basis of the comparisons.
Let ¢; be the mean of the z-values of the things individual ¢ ranked h¢gher than
the other things, weighted by the respective frequencies of the judgments, and
et y: be the sum of squares of deviations from their mean of these z-values:

(4.8) t; = %; Z i fir
k
(4.9) yi = ; (r — t)fa = ; i fa — 6 F.

Similarly, let u; and z; be the mean and sum of squares respectively for the z-
values of the things individual < ranked lower than other things:

1
(4.10) W=y ; Tk o -
(4~11) 2y = ; (xk - u.~)2 Jix = ; xlzs Jik — uf F.

Let V be the mean of all the z-values in the experiment, and let W be the sum
of squares of deviation from their mean of the z-values:

r_l __1_ p
(4.12) V= E;xkc,— - ;xk,
(4.13) W= (zx — V)c=cy ai — V2C.
k k
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W is the total sum of squares for the experiment. Let R be the sum of squares
between individuals, and let S be the sum of squares within individuals:

414) R=2I[(t:— VY + (s — VVIF = F; @ + u?) — V?C,
(4.15) 8=2 (yi+2z)=W-—R.

Our principle is to quantify the judgments by obtaining the z-values that will
menimaze the variation within individuals compared to that of the group as a whole.
This means making S as small as possible compared with W, which is equivalent
to making R as large as possible compared with W.

Therefore, if we define the correlation ratio E by

(4.16) E=1-8/W,

the problem is to determine the z; that will maximize E*.
A convenient formula for E” is, from (4.15) and (4.16),

(4.17) E’ = R/W.

Since E’is invariant with respect to translations of the z-values, we can without
loss of generality set

(4.18) V=0
Then we can write from (4.14) and (4.13), respectively,
(4.19) R =F3 (65 + ud)

(4.20) W= cZk: i .

To find the maximizing values z; for E°, we differentiate the right member of
(4.17) with respect to the z;, set the derivatives equal to zero, and obtain the
stationary equations

oR ,OW
(4.21) 9z, = E az;
The derivatives of R can be evaluated by differentiating the right member of
(4.19) with the aid of (4.8):

R 2
(4.22) 6_::;, =% ZI‘: zi E‘ (fsifox + gii gan)-
From (4.20), the derivatives of W are
114
(4.23) 5; = 2cz;.

If we let

(4.24) Hj = é, ; (fsi for + gii gar),
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then (4.21) can be re-written from (4.22), (4.23), and (4.24) as:
(4.25) > aHp = E'a;.
k

Equations (4.25) are the equations to be solved numerically for the maximizing
ZTj.

Before indicating a procedure for the numerical solution, let us first verify
that a solution of (4.25) will satisfy (4.18). Summing both members of (4.25)
over j, and -using (4.24) and relations among the notation previously defined,
we get

; Tr = E2 E Z;,
1

or, from (4.12),

(4.26) Q—-EH)vV=o0.

Therefore, if E* # 1, we must have ¥V = 0. Since a perfect correlation ratio
will not in general occur in practice, condition (4.18) will in general be satisfied
by a solution of (4.25).

There is always a trivial solution of (4.25) for which E* is formally equal to
unity. This is ; = 1. For this trivial solution, t; = u; = 1; R = W = (;
E* = 1; and (4.25) is satisfied. / Of course, E is not an actual correlation ratio
for this trivial solution.

The non-trivial solution of (4.25) can be carried out with the aid of matrix
algebra. Let x be a row vector of the n elements z;, and let Hbe the n X n sym-

metric matrix || Hi||. H is not only symmetric but Gramian, since its ele-
ments are product sums. Now (4.25) becomes the matric equation
(4.27) xH = E'x.

Equation (4.27) shows that z is a latent vector of H, and E? is a latent root to
which this vector corresponds. Since we want the largest possible correlation
ratio, we seek the largest of the non-trivial roots. If the two largest non-trivial
roots are not equal, which should be the general case in practice, then there is a
unique vector associated with the largest root which is the solution to our
problem.

The numerical solution of (4.27) can be carried out by the simple iterative
technique for latent roots and vectors (see, for example [6]). The iterations
converge in general to the vector associated with the largest root. To avoid
convergence to the trivial solution (which formally has the largest root), the
trial vectors should be adjusted to satisfy (4.18); then they will converge in
general to the vector associated with the largest non-trivial root.

A good way to choose a first trial vector is first to guess what the rank order of
the z-values will be. Let r; be the guessed rank of z;, the r; comprising the
integers from one to n. If n is odd, then as the first trial z; use r; — (n 4 1) /2.
If n is even, then as the first trial z; use 27, — n — 1.
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A marginal check on the internal consistency of the judgments of the popula-
tion is to compare each difference (x; — ) with the corresponding difference
(Z ek — Z ewx;). If the population’s judgments are sufficiently consistent,

the signs of the two differences will be alike for all the comparisons. Z ik

is the frequency with which O, is judged greater then O, and can be used as a
basis for guessing the ranks of z; and z .

6. Comparing combinations of two things. The problem of the score card is
but one example of a class of problems that can be formalized as follows. Con-
sider a set of n items, where the jth item has m; categories. Let O;, be the pth
category of the jthitem, (p = 1,2, --- ,m;;5=1,2,---,n). TheO;, maybe
either qualitative or quantitative, and the order of subsecripts assigned the
categories can be arbitrary.

- Each of N individuals is asked to make judgments of the form that the com-
bination (0, , O) is greater than (or less than) the combination (Oj,, Oks).
We shall assume that all people compare each of the pairs of combinations, and
that the rules of the experiment exclude judgments of equality.

The judgments of all the individuals on all the comparisons can be repre-
sented compactly as follows. Let

1 if individual 7 judges (O;p, Orr) > (Ojq, Oks)

(5.1) Ciikiprgs =
Hora 0 otherwise.

Here and throughout this paper the ranges of subscripts, whether free o dummy,
will always be as follows:

i=1,2-,N
(56.2) k=12 --,n
p,qrs=12 ---,m;, (or m,as the case may be),

so that the ranges will not be explicitly stated again.
Definition (5.1) implies the symmetry

56.3) €ijkiprigs = €ikifrp.eq s
and that
0 if individual ¢ omits the comparison of (0, ,
Oyr) with (Ojq , Oks)

(5.4)  eiiksprias Tt Ciikjgepr =
wlend e 1 if he judges these two combinations to be

unequal.
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Additional notation is defined as follows. Let ai/pr be the number of com-
binations individual ¢ judged to be lower than (0, , Ox), and let b;ji/pr be the
number of combinations he judged to be higher than (0;,, O):

(5.5) Qijk/pr = E Z Cijk/pr.as = Qikijfrp
q 8

(5.6) bjrsor = Z E €ijksgaor = Dikifrp -
q 3

Let c;x/pr be the number of comparisons for all individuals involving (O;p , Okr):

(5.7) Citor = 2 (@iitsor + bijrror) = Chifrp -

Let f:;» be the number of times that 0;, occurred in combinations that were judged

to be higher than other combinations by individual Z, and let ¢;;, be the number
of times 0;, occurred in combinations judged lower than others:

-
(5.8) Jiion = Zk: Z Qijkpr = ; Z Qikifrp
5.9) Giip = Zki 2; bijksor = :4: ; bikiep -

Let A;, be the total number of times in the entire experiment that O;, was
judged:
(5.10) Ap = Z‘: (fiip + 9iin) = Ek 5‘7 Cik/or

Let F be the total number of comparisons made by each person, and let C be
the total number of judgments in the entire experiment (a comparison com-
prises two judgments, one of “higher than’ and one of “lower than”):

(5.11) F=X2firn=2 X g,
(5.12) C =2 2 A, =2NF.

The means and variances required for the problem are defined as follows.
Let z;, be the numerical value to be derived for O;, from the judgments. Let
t: be the mean of the z-values of the combinations individual ¢ judged to be
higher than other combinations, weighted by the respective frequencies of such
judgments, and let u; be the analogous mean of combinations judged lower than

others:

(613) &= lE 222 @ip + ) Gijurpr = 2 2 2 Tiefar,
F 7 k p r F k r

619  w= p T T T G+ o) b = 35 2 o

Let y: be the sum of squares of deviations from their mean of these ‘higher
than”’ z-values, and let z; be the analogous sum of squares for the “lower than”

z-values:



PAIRED COMPARISONS 153
Yi = Zj Zk: Zp: Zr: (ip + T — 1) issor
= ; ; :L: Zrl (@ip + Tur) Cijnsr — i F,
z; = ZJ: 2;,: ; Z #ip + Zir — %) bisspr
= Zj) ; Ep: ; (@ip + Zae) Dijnir — U F.
Let V be the mean of all z-values, weighted by their respective frequencies

in the entire experiment, and let W be the sum of squares of deviations from
their mean of these z-values:

(6.17) V= '1(,—' ZJ: kZ 22 @iy + T )eibrpr = %; 2 T i,
W= ; ; ZP: zr: @ip + 24r — V)z Cik/pr
= Z ; PIDD ®@ip + Tir) Cingr — V2C.

W is the total sum of squares for the experiment. Let R be the sum of squares
between individuals for the experiment, and let S be the sum of squares within

individuals:
(519) R=2 [t — V)Y + (us — V)IF =F 2 (& + u}) — V*C,

(5.15)

(5.16)

(5.18)

(5.20) 8=2 (yi+2z)=W-—R.

Our principle for quantifying the judgments is to derive the z-values that will
minimize the variation within individuals compared .with that within the group
as a whole. This means making S as small as possible compared with W.

Therefore, if we define the correlation ratio E by

(5.21) E=1-8/wW,

our problem is to determine the x;, that will maximize E*.
A convenient formula for E” is, from (5.20) and (5.21),

(5.22) E' = R/W.

Since E® is invariant with respect to translations of the z-values, we can
without loss of generality set

(5.23) V=o.
Then we can write, from (5.19) and (5.18) respectively,
(5.24) R=F2 (& + ul)

(5.25) w = Z]‘, Zki Zp; Z @ip + 1) Citpr -
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6. The unrestricted maximum. To find the maximizing z-values for E?,
we differentiate the right member of (5.22) with respect to the z;, and set the
derivatives equal to zero. This yields the stationary equations

SR _ oW

6.1 =
(6.1) 9z;p E 0Tip

To evaluate the partial derivatives of R, we differentiate the right member of
(56.24), using (5.13) ard (5.14), and obtain

oR 8

(6.2) trn = F2e 2 2 (fuinfiar + Gripgine)-

by k r )
Similarly for W, we differentiate the right member of (5.25) and obtain

W
(63) o = 4@ Aip + 20 20 Tk Citror)-

ax“; kT

From (6.2) and (6.3), (6.1) can be written as
(6.4) 22 ahiyer = 3B (vip Aip + 20 20 thrciniar),
where
1

(6.5) hikjor = f‘; (finfirr + GiinGitr)-

The numerical solution of the z-values is to be obtained from (6.4).

Before showing a procedure for the numerical solution, let us verify that a
solution of (6.4) will also satisfy (5.23). Summing both members of (6.4) over
j and p, and using (6.5) and relations among the notation laid down in the pre-
vious section, we get

; Z T Apr = %Ez(; }p: ZTipAjp + kz Zr: Tr Asr)

or

(6.6) a - E’)}; > T A = 0.
From (5.17), this can be written as

(6.7) Q—-E)V =0.

Therefore, if E* # 1, we must have V = 0. Hence, any solution of (6.4) which
does not yield a perfect correlation ratio must have a weighted mean of zero for
the z-values. Since a perfect correlation ratio will not in general occur in
practice, condition (5.23) will in general be satisfied and is no restriction.

It should be noted that there is always a trivial solution for which E? is for-
mally equal to unity. The trivial solution is to set ;, = 1. Then ¢; = u; = 2;
R = W = 4C; E* = 1;and (6.4) is satisfied since it reduces to (6.7). For this
trivial solution, E is of course not an actual correlation ratio.
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The non-trivial numerical solution of (6.4) can be carried out in practice with
the aid of matrix algebra. Instead of regarding the x;, as elements of a table
with n rows with m; elements in the jth row, consider the rows of such a table
placed end to end to form a single row of M = Z m; elements. Denote this

7
as the row vector x. Correspondingly, consider the values ki, arranged to
form the elements of a symmetric matrix H of M rows and columns; consider
the M values A j, to be the diagonal elements of an M X M diagonal matrix 4;
and consider the values of ¢ i/, arranged to form an M X M symmetric matrix C.
Let A = 2E’. Then (6.4) becomes in matric form:

(6.8) xH = \xA 4+ xC) = Axx(4 + O).

In the next paragraph it is shown that, in general, (A + C) is non-singular,
so that it has an inverse by which the members of (6.8) can be postmultiplied,
yielding
(6.9) xH(A + 07" = \x.

This shows that x is a latent vector of H(4 + C0)7, and X\ is the latent root to
which this vector corresponds. Since we want the largest possible correlation
ratio, we seek the largest of the non-trivial latent roots. If the two largest non-
trivial roots are not equal, which should ordinarily be the case in practice, then
there will be a. unique latent vector associated with the largest root.

It is of interest to show that all the latent roots of H(4 4+ C)™* are real and
non-negative, and that all the latent vectors are real. First, we notice that H
is Gramian, for its elements are product sums. To see that 4 + C is Gramian,
we notice that from (5.18) and (5.10),

(6.10) W=2 Z Zx?pAip + 2 Z ; Z ina’xlncik/pr - Ve,
i » i p T

or, in matric notation, and transposing members,

(6.11) 2x(A + Ox' = W + V°C.
Since W is a sum of squares, the right member is clearly non-negative; and hence
(6.12) x(4+ O)x' =0,

for all x. Thus, A + C is nonnegative-definite, or Gramian. Furthermore,
A + Cis in general nonsingular, because according to (5.17) and (5.18), V and
W cannot vanish simultaneously unless

(6-13) (x;‘p + xkr)cjk/pr = 0.

If n = 3, then (6.13) will ordinarily imply that x;, = 0, that is, the equality in
(6.12) will hold if and only if x = 0. In such a case, 4 + C is positive-definite,
or is nonsingular as well as Gramian, and possesses an inverse.

As is well known, the inverse of a Gramian matrix is Gramian (see [5, p. 71],
for example), so that (4 4+ C)™'is Gramian. That the latent roots of H(4 +
C)™" are all nonnegative follows from a general theorem that the latent roots of
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the product of two Gramian matrices are always nonnegative [5, p. 116]. The
proof of this is brief, and will be repeated here in a little different variation in
order to prove in addition that the latent vectors are all real. Let G be a sym-
metric square root of 4 + C, so that G = A + C. If we postmultiply both
members of (6.9) by G, we can write the results as:

(6.14) (xG)(G'HG™) = A (xG).

This shows that xG is a latent vector of G'HG ™ corresponding to the root \.
But G'HG ™' is symmetric, and in fact Gramian, for it can be written in the form
(G'K)(GT'K)’, where KK’ = H. Hence, each \ is nonnegative, and each
xG is real, whence each x is real.

The numerical solution of (6.9) can be carried out by the simple iterative
technique for latent roots and vectors (see, for example, [6]). The iterations
converge in general to the vector associated with the largest root. To avoid
convergence to the trivial solution (which formally has the largest root), the
trial vectors should be adjusted to satisfy (5.23); then they will in general
converge to the vector associated with the largest non-trivial root.

A marginal indication of the internal consistency of the judgments is the
agreement in sign of

@ip + Tkr) — (Tjq + Trs)
with

Z €ijk/pr.gs Z €iik/gs,pr 5
1 1

for each of the comparisons. If one combination is judged higher by more
people in comparison with another, then its z-values should exceed those of the
other for marginal consistency. ’

7. The maximum under certain linear restrictions. In the previous section,
no restrictions were placed on the z;, in maximizing E*. For some problems,
the 0;, may be quantitative, and it may be desired within each item to keep the
distances between the z,, proportionate to the distances between the O;, . This
was the case for the score card, where a linear system of weighting had to be
used to be practicable for the army. It was necessary to derive a constant
multiplier for length of service, a constant multipler for time overseas, etec.,
even though there were curvilinearities in the judgments.

Our principle enables us to handle such restrictions just as well as the un-
restricted case. We shall derive the set of multipliers which is most consistent
for the judgments in the sense of least squares. The ordering of categories
within an item will no longer be considered arbitrary. Instead, subscripts will
be assigned in a fashion to make (0; — Oj,) proportional to (p — ¢) within
each item. For convenience, the subscripts can be assigned beginning from zero
for each item.



PAIRED COMPARISONS 157

The linear restriction is to determine z-values in the form
(7.1) Tip = §; + Py,

where the £; and the 7; are now the basic unknowns to be solved for to maximize
E*. Tt is the n; that are of interest, for they will be the multipliers; but the &;
have to be used in the analysis to help determine the multipliers even though
they are only additive constants that will not affect the order of total scores of
people.

To maximize E* under the linear restrictions, we differentiate the right mem-
ber of (5.22) with respect to the £; and the 7;, set the derivatives equal to zero,
and obtain the stationary equations

oR 2 0W
7.2 — = E*_
(7:2) 9¢; 9E;

oR 2 OW
7.3 — =
(7.3) an; In;

In order to evaluate the indicated derivatives, it is helpful to introduce some
more notations. Let:

(7-4) lox = Efs‘kr, mo,ik = E Gikr
(7.5) Lt = 2 o, Muse = D Tarr
(7.6) o = Zp 2': P° Cispr
(7.7) duie = 25 2 Prejye = du i
p r

(7.8) D,; = A:.: ; Z P’ Cit/or = ; da, ik
(7.9) ho,ix = ;—,E (fo.sibo.ix + mMma,i5mo 1)

1
(7.10) hijr = FE (i lo,ix + maeimo,ix)
(7.11) heix = —IF.Z (Liihe + maygimi).

It is important to notice that dy,;x = do;, but that dy ;x ¥ dix;, Similarly,
ho.it = hox;and kg, ;u = he ki, but hy, i £ hiki.

To evaluate the derivatives of R, it is helpful to re-write the right members of
(5.13) and (5.14) by means of (7.1), (7.4), and (7.5):

(7.12) = %; (Erlor + mlix)

(7.13) U = %; (&xmo,ix + memux).
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Differentiating the right member of (5.24) with respect to the £; and the 7; re-
spectively with the aid of (7.12) and (7.13), and using (7.9), (7.10), and (7.11),

yields
R

(7.14) = = 82, (& hoix + m hugs)

afy k

oR
(7.15) Pl 82 (& huw + i ha,in).

i k

For the derivatives of W, we re-write (5.25) using (7.1):
(7.16) W= 20202030 (& + pmi+ b+ rne)’ cingor -
1 v » T

Differentiating with respect to the £; and 7, respectively, we obtain, using (7.6),
(7.7), and (7.8),

oW
(7.17) :9? = 4[¢; Do,; + n; Dv,; + ; (& do,ix + 72 diei)]
7
ow
(7.18) o 4[¢; Dy,j + n; Dey; + ; (& diix + mi dun,iz)]

The stationary equations (7.2) and (7.3) can now be re-written by means of
(7.14), (7.15), (7.17), and (7.18) as:

(7.19) ZI; (& o + i hugs) = 3E°[E Do,; + ;D1 + Zk: (& do,ix + nz dixs)]
(7.20) ; (& hiix + me ha,e) = 3E°[& D1 + i Daj + ZkI (&xdrir + 1% dujn)].

These are the equations to be solved numerically for the maximizing £; and 9; .
Before showing a procedure for the numerical solution, let us verify that a
solution of (7.19) and (7.20) will satisfy (5.23). From (7.1), (5.17), and (7.8),

(7.21) V= %, 5 (6 Dus + mDu)

Summing both members of (7.19) over j shows that
1 — EY Zk: (& Dok + meD1i) = 0,

or, from (7.21),
(1 - E)V =0.

Hence, if E* > 1, the corresponding solution will satisfy the condition that V = 0.

As in the unrestricted case, there is always a trivial solution that will yield an
E? formally equal to unity. This trivial solution is £; = 1, 5; = 0, which makes
Z;» = 1 as in the previous case. These values satisfy (7.19) and (7.20), and
have E* = 1. Of course, E is again not an actual correlation ratio for this trivial
solution.
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To obtain a non-trivial solution, it is convenient to write (7.19) and (7.20) in
matric notation. Let
(7.22) z= |l [l

z is a row vector of 2n elements, the first n elements being the £; and the last n
elements being the #;. Let

[ho, ix] [h1, 2]
[A1,%5] [ha, ix] .

his 2n X 2n and is symmetric; in fact it is also Gramian, since its elements are
product sums. Let §;; be Kronecker’s delta, and let

[Do,; 8% + do,t] [Dy,; 8% + dujil

(7.23) h =

(7.24) c=

[Dy,; 65 + dil [Ds,;8% + dus,ixl

¢ also is 2n X 2n, symmetric, and Gramian. Again let

(7.25) N = LER
Equations (7.19) and (7.20) can now be stated as a single matric equation:
(7.26) zh = \zc.

In general, ¢ will be nonsingular, so that it will have an inverse by which both
members of (7.26) can be postmultiplied to yield

(7.27) zhe™! = Az

Therefore z is a latent vector of hAc ™", and A is a latent root. Since we want the
largest correlation ratio, we seek the largest of the non-trivial latent roots.
The largest root in practice will ordinarily be unique. There is then a unique
latent vector corresponding to this root, and the elements of this vector provide
the most consistent £; and %; for the population in the sense of least squares.

That ¢ is Gramian and in general nonsingular, that the latent roots of hc™
are all nonnegative, and that the latent vectors of hc™ are all real, requires only
proofs analogous to those for the corresponding properties of A + C and h(4 +
€)' in the previous section, which need not be repeated here.

As in the previous section, the final numerical steps can be carried out by
iterations according to (7.27). Again, the trial vectors should be adjusted to
conform to (5.23) to prevent convergence to the trivial solution.

A marginal indication of the consistency of the quantification is the agreement
in sign of

@ = Qi+ (r— )m

Z €iik/prias Z €ijk/qs,pr »
£ 2 1

with

for all comparisons.
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Appendix: A distinction between the conventional principle and the present
principle. The relationship between the conventional principle of estimating
means of hypothetical distributions and the present principle of reproducing
the comparisons of each individual will be analyzed here for the case of ordi-
nary comparisons. Only the principles will be contrasted here.

In the conventional approach, it is assumed that each of the N individuals
has a numerical value for each of the O;. Let s;; be such a value of O; for the
sth individual. The hypothesis is that person ¢ makes the judgment O; > Oy if
8i; > si ; and the conventional problem is to estimate from the judgments what
the relative distances are between the means p;, where

1
(A.1) B = N ; S »

The ranges of the subscripts are:7 = 1,2, --- ,N; 7, k, 1= 1,2, --- ,n;and will
not be explicitly indicated.

According to the approach of this paper, if we are to consider hypothetical
variables, the problem would be to determine for each O; a numerical value z;
such that the differences (z; — ) will best approximate the (s;; — si) for each
individual in the sense of least squares. This will separate ‘“higher than” z-
values from “lower than” z-values. If we let

(A.2) Z = ; ’Z kE [(se; = six) — wi (x; — xk)]z,

where w; is a constant of proportionality to be determined for each individual
separately, then the problem is to determine the z; and the w; which will mini-
mize Z.

Differentiating Z with respect to the w; and z; respectively, and setting the
derivatives equal to zero, yields the stationary equations

(A.3) 2wl — 8) = wilw; — #) = 0
(A.4) 2 (o = B)(sw — wim) = 0,
where

(A.5) s= %, i=,%a.

Since Z is invariant with respect to translations of the z; (also to translations
of the s;;), the origin of the x; is arbitrary, and there is no loss in generality in
setting :

(A.6) z=0.
Then if we let
A7) a=wa, B = ai.



PAIRED COMPARISONS 161

equations (A.3) and (A.4) can be re-written respectively as
(A.8) Z wi (87 — &) = ax;,

(A.9) ; Ty Sgr = Pws.

By summing both members of (A.8) over j, we see that

(A.10) ad z;= 0.
1

Therefore, since in general & > 0, we must have £ = 0; and a solution of (A.8)
will necessarily be consistent with (A.6).
Using (A.9) in (A.8) yields the stationary equations for the z; alone:

(A.11) ; T Z Sik(sij — &) = ofz;.

This shows that the z; are elements of a latent vector corresponding to a latent
root of of the n X n matrix defined by the elements S;; , where

1
(A.12) Sik = E Sik(se; — &) = Z SiiSik — z\::. E Sk Sit «

To determine which one of the latent roots provides the minimum Z, we first
notice—by multiplying both members of (A.9) by w; , summing over %, and using
(A.7)—that

(A.13) E 4:‘_, i Sar Wi = af.

Then expanding the right member of (A.2) with the aid of (A.9) and (A.13), we
obtain

(A.14) Z/2n = 3 3 (sij — 8" — aB.

Clearly, Z will be minimized if we use the largest «8. Therefore, we seek the
latent vector associated with the largest latent root of || S ||.

To examine the relation of the elements of this minimizing latent vector to the
means u; of the hypothetical variables, denote the variances and correlations
of the hypothetical variables by:

1 1
(A.15) o} = N 2 (85— wi)’ = 7 };, 855 — Uy
1
(A.16) L ZP (87— wa)(sie — i) _N Z': Sii Sik = MiMk
Pik = N(T,- . = p
Then

(A.17) 2 sisa = Nojouon + uims) -
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From (A.17) and the last member of (A.12), we can write

(A.18) %Sik = ojonpix + wipk — }t ; (ox 01 prr + prp) .

The elements. of the matrix of which the z; are a latent vector are now ex-
pressed in terms of the means, variances, and correlations of the hypothetical
variables, according to the right member of (A.18). It is clear that in general,
the u; are not elements of a latent vector of || S ||, so that our approach is in
.general not equivalent to the conventional approach.

In the special case of equal variances and correlations, such as is often as-
sumed in the conventional approach,’ we can now see that the u; do define a
latent vector. For this case, let the common variance be ¢°, and let the common

correlation coefficient be p. Then
(A.19) pit = p + 8x(1 — p),
where 8,z is Kronecker’s delta; and (A.18) becomes

1 1
(A20) 3 80= @ = 950 = 1) 4 s =
where
(A.21) Bl
n

From (A.20) and (A.12), (A.11) becomes converted to

(A.22) by = 0= o = i — DX e,

where

(A.23) vy = of/N.

Multiplying both members of (A.22) by z; and summing over j shows that
(A.24) (2 wi)* = Bly — o*(1 = p)].

From (A.22) and (A.24) we obtain the elements of the minimizing latent vector
for Z to be, in- normalized form,

I B Sl S
VB Vv — (1 — p)

That this is the minimizing vector follows from the fact that the remaining
latent roots must all have y = ¢°(1 — p) in order to have vectors distinet from
(A.25); (A.25) does correspond to the largest nontrivial root, since for it the

(A.25)

* More specifically, zero correlations are assumed, but this is not necessary for our
purpose.
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root satisfies the inequality ¥ > o’(1 — p). (The remaining latent vectors are
not uniquely defined, for they all correspond to equal roots.) Therefore, the
means of the hypothetical variables are a linear function of the elements of the
minimizing latent vector for the case of equal variances and correlations.

As a final comment, it*should be pointed out that paired comparisons are
insufficient to estimate the hypothetical values. Two persons with widely
different hypothetical values will make the same judgments provided only that
their values have the same rank order. Therefore, hypotheses about variables
presumed to underlie the comparisons cannot be completely tested only on the
basis of the comparisons.

Psychologically, it may or may not be proper to assume that judgments of the
type O; > O can be expressed as a function of differences s;; — si. Perhaps,
psychologically, comparisons may operate on some more complicated principle.
The approach presented in the body of this paper does not assume anything
about underlying variables, but simply seeks a set of numerical values that will
best help reproduce the observed data for each individual.
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