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1. Introduction. In an article published elsewhere in the present issue of the
Annals of Mathematical Statistics [1] the g-th moments of two statistical test
criteria L., and L,. were found to have the following expressions, respectively:
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where r is a positive integer, the two moments (1) and (2) reduce to
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For any given value of 7 (z = 1, 2, , k — 1) the ratio
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which is the g-th moment of a beta variable u; distributed according to
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Each of the moments in (5) is therefore of the form
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Thus, Ly, and L, are each distributed like the product of ¥ — 1 independent

beta variables.
Each of the moments in (5) can be expressed in the general form

o v I_Il(i — A+ 1)”
H(i - B.-+1>’

t=1

- _2_ 1) , A; and B; are real numbers.

Other likelihood ratio statistical test criteria which have been discussed in the
literature have moments which can be expressed in the general form (6). For
example, the likelihood ratio criterion L, for testing the homogeneity of sample
variances [2, Neyman and Pearson 1931] has moments of this type. The gen-
eralized L, criterion for samples from a normal multivariate population [3,
Wilks 1933] has such moments. The criterion for testing sphericity [4, Mauchly
1940] of a normal multivariate distribution has moments of this kind. All test
criteria having this type of moment lie on the interval (0, 1). The exact dis-
tribution functions of the criteria, except possibly for » = 1 or 2 in some cases,
are very complicated.

The purpose of this note is to consider a method of finding a fractional power
of the test criterion which is approximately distributed (in a sense to be deseribed
later) according to an incomplete beta (Pearson Type I) distribution function,

where z = g(or
n
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and to find the appropriate values of p, ¢, and the exponent of the criterion.

2. Generalized hypergeometric series as moment generating functions.
Suppose L is a statistical test criterion, or more generally a random variable
having as its g-th moment the expression (6). The moment generating function
¢(t) of L can be expressed as
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where ,1Fy [ ] is a generalized hypergeometric series [5, Bailey 1935]. We
shall not make explicit use of this fact ; instead, we shall work with the coefficient
of ¢ in the series, i.e., M,.
Let us consider
a0  wi= Tl - 1) - Tl -m+1).
Sl xz ) s x 0
To expand this in a power series in = consider a single term

n(; - a+1) - Fui-a+)

i=1

(11)
9 .
= — — %
= —glhz+ghn(l Ax)+§m(1+ I—Aa:)'
Now
jx _ . «4 2 § 42 8 .
1+ 5 = 1+ jx + jAx" +jA " + --- .
Writing

g
Sal) = 25",
and using the usual expansion for In (1 + z), we find
i} - 4+1) = —glaz+ 190 - Ade + BA + 450) — 4SO

+ [—34° + A’8:(g) — AS:g) + 3S(g)l® + ---.
Applying this expansion to the separate terms in (10) and writing
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the terms not involving A; or B; cancel out leaving
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We shall return to this expression later.

(13)

3. Powers of a beta variable. If u has (7) as its distribution function, then

(19 Ba) = g

If v = W, r integral, then its g-th moment is given by setting h = rgin (14).
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which is a special case of (6) when p is of order n.
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we have
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For any given moment of the form (6), from which =, C;, and C: can be com-
puted, we determine p, ¢, and 7 so as to satisfy
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The use of fractional r is obviously suggested, but its value and validity are
not discussed here. Using the values of p, ¢ and r thus obtained, the distribution
of the criterion L (having moments (7)), is given approximately by

I'(p+9q) -1 T
(18) OO (/D)1 = /L) d(/L)



322 JOHN W. TUKEY AND 8. 8. WILKS

where the approximation is such that all moments are correct through terms of

r
order (p T ) (when moments are expanded in series of » _T_ ) and nearly
(exactly if there is an integral value of r satisfying (17)) correct through terms of

order

+

4. Examples. Returning to the g-th moment of L,m given by the first ex-
pression in (5) we have
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To determine p, ¢ and r for the fitted distribution of Lm.. we set
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and solve for p, ¢ and r. We have the following table of values, p, ¢ and 7 for
various values of k (p being calculated by using the rounded values of 7):

r
k r (rounded) L4 ?
3 2 2 n—3 3
4 2.93 3 1.5n — 5.5 55
5 3.82 4 2n — 8.5 8.5
6 4.68 5 2.5n — 12 12
7 5.53 6 3n — 16 16
8 6.35 6 3n — 20.5 20.5
9 7.17 7 3.5n — 25.5 25.5
10 7.96 8 4n — 31 31
20 15.76 16 8n — 113.5 113.5
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Thus, by rounding r off to the nearest integer and using this rounded value of r
in determining p, we have values of p, ¢ and r for each value of k, which, when
substituted in (18) give us the desired fitted beta distribution for Lm... For
k = 3, the fitted distribution is the exact distribution.

For the g-th moment of L,. which is given by the second expression in (5),

it is convenient to expand in powers of Hence we have
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To determine p, q and r for fitting the distribution function of L.. we put
ptg_n—1

r 2
¢=310+k—9
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We have the following table of values of p, ¢ and r for several values of k:
k r ( r P q
rounded)
3 2 2 n—3 2
4 2.88 3 1.5n — 5.5 4
5 3.71 4 2n — 8.5 6.5
6 4.52 5 2.5n — 12 9.5
7 5.32 5 2.5n — 15.5 13
8 6.14 6 3n — 20 17
9 6.88 7 3.5n — 25 21.5
10 7.82 8 4n — 30.5 26.5
20 15.26 15 7.5n — 111.5 104

By rounding r off to the nearest integer, and using the rounded value of r in
determining p, we have values of p, ¢ and r for each value of k£ which, when sub-
stituted in (18), give us the desired fitted beta distribution for L,.. For k = 3,
the fitted distribution is the exact distribution.
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For a given value of k, approximate 5% and 1%, points of /L. and /L,
can therefore be obtained from Thompson’s [6] tables of the Incomplete Beta
Function by entering the tables with » = 2¢, and », = 2p. For example, for
k = 6 the 5% and 1%, points of v/ L, are obtained by entering Thompson’s
tables with » = 24, and », = 5n — 24.
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