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examination of the proof of Theorem 3 shows that it would go through with
little change if equation (3) were replaced by the requirement that |m(a) |
be bounded. We therefore obtain the following result: If for a doubly simple
region there exists an unbiased estimate p(«) of p, not identically equal to p(a),
then not only is p() not proper, but also, no matter how large M, there exists a
boundary point & such that | p(a) | > M. The uselessness of such an estimate
is manifest.

The author is of the opinion that freedom from bias is not necessarily an in-
dispensable characteristic of an optimum estimate. In general there is no
reason for requiring the first moment of the estimate rather than any other
moment to be the unknown parameter. The justification in any particular
case must be based on special conditions of the problem.

The author is indebted to Mr. Howard Levene for reading the present paper
and making valuable suggestions.
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DIFFERENTIATION UNDER THE EXPECTATION SIGN IN THE
FUNDAMENTAL IDENTITY OF SEQUENTIAL ANALYSIS

By ABrRaAHAM WALD

Columbia University

1. Introduction. Let {z.} (« = 1, 2, ---, ad inf.) be a sequence of random
variables which are independently distributed with identical distributions.
Let a be a positive, and b a negative constant. For each positive integral value
m, let Z,, denote the sum z; + --- + 2,,. Denote by n the smallest integral
value for which Z, does not lie in the open interval (b, a). For any random
variable u, let the symbol E(u) denote the expected value of w. The following
identity, which plays a fundamental role in sequential analysis, has been proved
in [1].

(1.1) Ele"™e(®)7"] = 1,

where
(1.2) o(t) = E(e™)
and the distribution of z is equal to the common distribution of 2, , 2, , - - -, ete.

Identity (1.1) holds for all points ¢ in the complex plane for which ¢(f) exists
and |o(f)| > 1.
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The purpose of this paper is to formulate conditions under which we may
differentiate (1.1) with respect to ¢ under the expectation sign. This is of
interest, since various results in sequential analysis can easily be established
by differentiating (1.1) under the expectation sign. For example, the formula
for E(n) can immediately be obtained by differentiating (1.1) at ¢ = 0. The
derivative of ¢“*o(f) ™™ at ¢ = 0 is given by

’ 0)
1.3 Z,.—‘in=Z,.—Ezn
(1.3) ‘ +(0) (2)
where ¢’(f) denotes the derivative of ¢(f). Hence, if we may differentiate (1.1)
under the expectation sign, we obtain the basic formula

(14) E(Z,) = E()E(n).

If E(z) # 0, the above equation has been used [2] to derive lower and upper
limits for E(n). If, however, E(z) = 0, formula (1.4) is of little value. It will
be shown in section 3 that

_ EZ%) _
(1.5) E(’n) = W when E(Z) = 0.
This result is obtained, as will be seen in section 3, by differentiating identity

(1.1) twice at ¢t = 0.

2. A sufficient condition for the differentiability of (1.1) under the expectation
sign. In what follows, the parameter ¢ in (1.1) will be restricted to real values,
even if this is not stated explicitly. For any random variable « and any relation
R, the symbol E(u | R) will denote the conditional expected value of u under
the restriction that R holds. In this section we shall establish the following
theorem.

TraeorEM 2.1. If o(f) exists for all real values t, identity (1.1) may be differen-
tiated under the expectation sign any number of times with respect to ¢t at any value
t in the domain o(f) > 1.

Proor: First we shall derive an upper bound for E(e n = m) for any
given integral value m. Consider the case when ¢ > 0. Then

(2.1) E@e?|n = m) < E(@*|Zy, > a,n = m) t > 0).

tZ,.l

Clearly,

1
(2.2) E(***|Zn>a,n =m, e’ = pe™) = e"'pE(e” | et > ;) .

Let I(¢) denote the least upper bound of the expression

1
(2.3) pE(ezt l elt Z ;)
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with respect to p over the interval (¢”“™®!*l, 1). The existence of ¢(£) implie®
that I(¢) is finite. It follows from (2.1) and (2.2) that

(2.4) E@'®|n =m) < U0 (t > 0)

and, therefore, also

(2.5) E(e'™ < (b t > 0).
If ¢ < 0, one can show in a similar way that

(2.6) E(@'®™|n = m) < ) (t <0

and

(2.7) E(e'™) < 'U(p) t < 0).

To prove Theorem 2.1, it is sufficient to show that the following two proposi-
tions hold.!

PropositioN 2.1. All derivatives of e™'o(t)™" with respect to t exist in the
domain o(f) > 1.

ProposITION 2.2. For any posttive integral value r and for any finite interval I
in which o(£) > 1, 1t is possible to find a function D(Z, , n) such that
dr

(2.8) D(Zn ) 2 |

[e* o(®™"]

for all values t in I and
(2.9 ED(Z,m)] < .

Proposition 2.1 is clearly true, if all derivatives of ¢(t) exist. The existence

of these derivatives follows from the existence of ¢(£) for all values &.
r

d . .
Since o e?(t)™" is equal to the sum of a finite number of terms of the type

Z"n"2e™"5()"", Proposition 2.2 is proved if we can show that for any given
integral values r; and 7, there exists a function D,,,,(Z, , n) such that

(2.10) Dyyry(Za, m) 2 | Z70%e™0(8) " |

for all ¢ in I and

(2.11) E[D,,,(Z,,n)] < .
Clearly, since o(f) > 1in I,

(2.12) | Z77e™ ()™ | < | Z7 | el ™%

where ¢, is an upper bound of |¢{|in I. Let # be a value > ¢ . Then for a
properly chosen constant C we have

(2.13) | Z7 lelz,.lto < Cel®ih,

1See, for example, E. J. McShane, Integration, Princeton University Press (1944), p.
216, 217 and 276.
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Hence, it follows from (2.12) and (2.13) that

(214) | Zin%e™()"| < Cnle! M < CnMr (et 4 ¢ o)
for all ¢ in 1.
We put
(2.15) Diiry(Zn , m) = Cn2 (6% + ¢ %h),
We have

(2.16) E[D1,0y(Zn,m)] = C Zw:lp,,. mAE |0 = m) + B |n = m)]

where p,, denotes the probability that n = m.
Hence, because of (2.4) and (2.6), we obtain
(2.17)  ElDyy(Za, m)] < C(&"Ut) + & "U—t)][Zpmm™®] =
= Cl*"l(ty) + e (—t)]E(n™).
Since all moments of n are finite,” Proposition 2.2 is proved. This completes
the proof of Theorem 2.1.

3. The expected value of n when E(z) = 0. It will be shown in this section
that
_EZY)
E(z2)
if identity (1.1) can be differentiated twice under the expectation sign at ¢ = 0.
The second derivative of ¢‘*o(f)™" with respect to ¢ is given by

’ 2 I 1(\12
3.9 7, —n? (t)] _ 9" @Be(®) — [ (t)]} Zat ("
@ {7 n ] - O OT
where ¢’(f) denotes the first, and ¢'’(f) the second derivative of ¢(%).
Since ¢(0) = 1, ¢'(0) = E(z) = 0and ¢”(0) = E(2°), putting ¢ = 0, expression
(3.2) becomes .
(3.3) Z5 — ng'(0) = Z% — nE(?)

Hence, if (1.1) may be differentiated twice under the expectation sign at ¢ = 0,
we obtain
(3.4) E[Z, — nE@E)] =0

from which (3.1) follows.

An approximate value of E(n) can be obtained from (3.1) by neglecting the
excess of Z, over the boundaries. Then Z, can take only the values a and
b. Hence
(3.5) E(Z%) ~ &’P(Z, > a) + b’P(Zs < b)

where the sign ~ denotes approximate equality.

(3.1) E(n) when E(z) =0,

2See the paper by C. Stein, ‘‘A note on cumulative suns,’’ in this issue of the Annals
of Mathematical Statistics.
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It was shown in [1] (equation 28) that neglecting the excess of Z, over the
boundaries, the approximation formula

bh
i

— ek

holds, where & is the non-zero root of the equation ¢(f) = 1. This formula was
derived there under the assumption that E(z) > 0. If E(z) approaches zero,

(3.6) P(Z, > a) ~

h — 0 and the right hand member of (3.6) converges to

b
—b
Putting P(Z, > o) = — pand P(Z, <8) = 1 — ~—7 = —"= v ob-
tain from (3.5)
(3.7 E(Z%) ~ ( )+ b b = —ab.
Hence®
—ab
(3.8) B(n) ~ g -

Limits for E(n) can be obtained by deriving limits for E(Z%). Let r be a
non-negative real variable. One can verify that

(3.9) @’ < E(Z%|Z.>a) £ lub. Ell@a —r+ 2)%|z2> 1]

0<r<a—b
and
(.10) b’ < E(Z%.|Z,<b) < lub. Elb+r+2°|z+r <0
0<r<a—b

‘We have
(3.11) E(Z%) = P(Z.

Limits for E(Z’) can be obtained by replacing the conditional expected
values in the right hand member of (3.11) by their limits given in (3.9) and
(3.10).

> a)E(Z% | Z,

2 a) + P(Z. < DE(Z%|Z. < b),
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