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1. Introduction. In a recent paper [3] H. E. Robbins derived general formulas
for the moments of the measure of any random set X, and applied the formulas
to find the mean and the variance of a random sum of intervals on a line. In
subsequent papers, J. Bronowski and J. Neyman [1], using other methods, found
the variance when X is a random sum of rectangles in the plane, and H. E.
Robbins [4] found the variance when X is a random sum of n-dimensional
intervals in n-dimensional euclidean space. In the latter paper Robbins
solved also the corresponding problem for circles on the plane.

Using the methods of Robbins, our purpose in the present paper is to solve the
following similar problems:

(i) Let R denote the rectangle consisting of all points (z,y) such that0 < z < 4,,
0 <y < A,, and let R’ denote the larger rectangle for which —¢ < z < A4; -+ 5,
-6 <y < A, + 6. Let p denote a rectangle of fixed dimensions, a X b, but
variable position in the plane. The position of p will be determined by the
coordinates z, y of its center P and the angle ¢ between the side of length a and
the z-axis. We suppose (a* + b*)} < min (4, ,A2,8). Let afixed number N of
rectangles p be chosen independently with the probability density function for
the coordinates (z, y, ¢) of each rectangle constant and equal to 2 = R’ in the
three-dimensional interval with base R’ and height = and zero outside this
interval. In section 3 we evaluate the first two moments of the measure of X,
where X denotes the intersection of the set-theoretical sum of the N rectangles
p with R.

(ii) Let R denote the n-dimensional interval consisting of all points (z; , s,
Xz, ,%,) such that 0 < z; < Ay, (4 = 1,2, --+ ,n), and let R’ denote the
larger interval for which —8 < x; < 4,4+ 8. Let a fixed number N of n-dimen-
sional spheres with radii  (such that 2r < min (4, , 24)) be chosen independently,
with the probability density function for the centre of each n-sphere constant
and equal to 1/R’ in R’ and zero outside this interval. Denoting by X the
intersection of the set theoretical sum of the N n-spheres with R, we evaluate
in section 4 the first two moments of the measure of X. This problem is a
generalization to n-dimensional space of the case considered by Robbins for the
plane (n = 2) in [4].

2. Preliminary formulas. Let K be an indeformable plane convex figure of
variable position in the plane. The position of K may be determined by the
coordinates (z, y) of a point P fixed within K and the angle ¢ which measures
the rotation of K about P. We shall call z, y, ¢ the coordinates of K. The
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38 L. A. SANTALG

measure of a set of figures congruent with K is defined as being the integral of the
differential form

@1 - dK = dzdyde.

It is readily shown that this measure does not depend on the particular point P
chosen to determined the position of K[5]. For instance, the measure of the
set of figures K, each of which contains in its interior a fixed point Q, has the
value 2 vF, where F denotes the area of K; that is,

2.2) dK = 2«F.
QeK

Let P and P, be two fixed points and let [ be the distance P;P,. The measure
of the set of figures congruent with K, each of which contains both points P,
and P in its interior, will be a function of K and I, say u(K, I). If d is the
diameter of K, that is, the maximal distance between two points of K, we have
wK,l) =0forl > d.

Examples. Let K be a rectangle p of fixed dimensions a X b, and let us
suppose a < b. The diameter d of pis d = (a® + b)*. Let P(x, y) be the
centre of p and ¢ the angle which forms the side of length b with the segment
line P,P; of length I. If we keep first ¢ constant, then in order that there exist
positions of p in which it containg the segment line P,P;, in its interior it is neces-

sary that
a — lsing > 0, b—1lcose >0

and in this case the area covered by the centres P in all these positions has the
value

(@ — lsing) (b — I cos o).

Integrating over all permissible values of ¢, we obtain

aresinla/l
@3) o 1) =4 mco,[:/i: (@ — Isin o)(b — 1 cos ) de
where we define
zifr <1
[t = |
lifz > 1.
Carrying out the obvious integration in (2.3) we have
2mab — 4la+b) + 27 forl<a<b
4(ab arc sin (a/l) — % a® — bl + b(* — oD}
(2.4) plp, 1) = fora <1<b

4(ab arc sin (a/l) — arc cos (b/l) + bl — o)}
|+ a@ =) — a4+ b)) — 3 D) fora <b <.
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As another example, let B be the rectangle consisting of all points (x, y) such
that 0 <z < 4,,0 <y < A;and let R’ be the rectangle consisting of all points
(z, y) such that

0L < A1+ —s<y<A+35 @+ ) < min (4, 4., d).

Let us consider the set of rectangles p whose centers belong to R’ and do not
contain either P; or P;, P; and P, being two fixed points which belong to R.
Let I be the distance P,P,. According to (2.2) and the definition of u(p, I)
the measure of the set, of rectangles p under consideration is

(2.5) 27R — 2.2 70 + u(p, 1),

where R’ = (4; + 28) (A; + 26) and p = ab.

Let K be a plane convex figure of fixed position in its plane. Let us suppose
K to be translated a distance [ in the direction 6, and let F(Km, [, 6) be the area
of the intersection of K with the translated figure. Obviously if d is the diameter
of K, F(K, I, 0) = 0forl > d. In what follows we shall consider the function

27

(2.6) K, = F(K, 1, 6) df.
0
Ezxample. Let K be a rectangle R of sides A;, A2. Let the symbol [z], as
in [1], be defined by
zifzx >0
[] = |
0oifx <0.
It is then readily seen that
(2.7) F(R,1,60) = [A; — lsin 6] [A2 — [ cos 6].

For our purpose the case in which I < min (4;, 4,) is of interest. In this case,
carrying out the immediate integrations, we obtain

(2.8) R, 1) = 27 A1ds — 4 (A1 + A4) + 21

Let S,., be an n-dimensional sphere of radius . S,, will denote also the
volume of this sphere, that is, as is known, (see (2, p. 109]),

(7'.7‘2)11/2
(2.9) Sne = =7 T\
| )
2
Let us call the measure of a set of spheres S, . the measure of the set of their
centers. That is, if the point P(x;, %2, - - - , x,) is the center of S,,, the measure

of a set of spheres S,,. equals the integral extended over the set, of the differential
form

(2.10) dP = dxdxs +« - d,, .
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For instance, the measure of the set of spheres S,,., each of which contains a
fixed point @ in its interior, has the value

@.11) [ ap=s.,
QeSp,r

where S,,.is given by (2.9).

The measure u(S,,, ) of the set of spheres S,,, each of which contains
totally in its interior a segment of length I(l < 2r), equals the volume of the
intersection of two-spheres S,,, whose centers are placed at the end points of the
given segment. That is, u(S,., ) equals twice the volume of the spherical
segment of an n-sphere of radius r and semiangle « = arc cos (I/2r). We will
represent the volume of this spherical segment by S,,.(2) and it may be calculated
in the following way: The intersection of the n-sphere with a hyperplane at a
distance x from the center is an (n — 1)-dimensional sphere of radius »' =
(* — z®% Let S._1, denote the volume of this (n — 1)-dimensional sphere
(given by the general formula (2.9)). The volume of the spherical segment,
whose base has the radius h = r cos «, will be

Sn,r(a) :fh Sp—1,r dx.

Putting * = r cos 6 and substituting for S,_i, the expression given in (2.9),
we obtain

7r(n—1)l2 rn

Sar(a) = IT(nT fo sin" 6 df = rS,._l,,fo sin” 4 dd.

2

Consequently we can write
2.12) WSnr 1) = 28ur(@) = 208us, [ sin®0 o,
0

where S,_;., is the volume of the (n — 1)-dimensional sphere of radius r and
a = arc cos (I/2r).
In (2.12) we may substitute

n—1)n—3)---3.1
nn — 2) ... 4.2

11 ZQ (n—~1)/2 (n _ 1) ( l? >(n——3)l2
e () =l

(n —1)n —3)---3.1 \
Tt T — ) . 42 (1""472)}

arc cos (1/2r)

f sin" 8 df =(
0
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for n even, and

a —_ —_— cee 2 \ (n—1)/2
fo st oo = Dn —3) - 42 z{1<1_z_2)

nn—2)...3 T \n 4r
(2.14) 2N otys2
n n—1 (1___l_>(”'3) +”.+(n—1)(n—3)---4.2‘
n(n — 2) 472 nn —2)...53
for n odd.

In particular, for n = 2, 3 we have

(2.15)  u(Ser,l) = 41" f sin’ 0 df = 2r” arc cos (I/2r) — é 1(4r* — lz)*
0

(2.16) w(Sar ) = 27 f Sin8d = 2 m® — ml + = b,
0 3 12
We shall now generalize the formula (2.8) to n-space.
A direction in n-space may be given by the corresponding point on the surface
of the n-dimensional sphere of unit radius, that is, by the end point of the radius
which is parallel to the given direction. The parametric equations of the

n-sphere . £ = 1 are
1

&L = cosqr
£ = sin ¢ COS ¢y
(2.17) & = sin ¢ Sin ¢y €OS @3

cereeeieeaeas e Ceeerenaas
£n1 = SN @ SIN @2 +* ¢+ SIN @r_2 COS Pr

£, = Sin ¢ sin @z -+ ¢ SN @yp SIN @y ,

where 0 < ¢p; < wfori <n — 1and 0 < ¢,1 < 2. The element of area of
this n-sphere has the value (see, [2, p. 109])

(2.18) do = sin" " o1 sin" gy +++ SIN oz dprdes *+* Aoy .

A direction in n-dimensional space may.then be given by the n — 1 parameters
Ly, P2, "t Pnts

Given the n-dimensional interval R consisting of all points (x1 , %2, @3, «* - , Z,)
such that 0 < z; < 4; (¢ = 1, 2, 3, --- n), and suppose that R is translated a
distance {(I < min (A4;, A,, As, --- , A,)) in the direction (o1, @2, **+ , @n_1),
the intersection of the translated interval with R is a new interval whose volume

has the value [ ] (4; — x.), where x; = I (& given by (2.17)).
1
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Our purpose is to evaluate the integral

n

2.19) B(R, 1) = f II 4: — z) do

Ep 1

extended over the surface E, of the n-dimensional sphere of radius unity. We
shall denote by E,, either the surface of the m-dimensional sphere of radius unity
or its area, given, as is known [2, p. 110] by

21rm/2

@220) Em=;@§.

Because of the symmetry, the coefficients of all the products 44,44+ Aiy_,
have the same value

Qp = (—l)k X1y ¢ T do.
En

The integral extended over the whole surface E, equals 2" times the integral
extended over the portion for which ¢ > 0. Hence, taking into account (2.17)
and (2.18) we get

2 /2
kokik . —3 . k—5
ar = (=1)"2TE,—; cee f Sin" "% %, cos ¢ SN s cos g2
0 o

(2.21) -+« sin" ¥, cos ¢i de dpz + -+ dok

2PEny
n+k—2n+k—4)...(n+k — 2k)
fork=1,2,---,n— 1. Fork = nwefind that

= (-1}

/2 /2
a, = (=1)"2"" f e f sin®* %51 cos ¢
0 0

(222) <. sin @n—1 COS @p-1 d(pl dgaz e dgo,._l

o
(n —2)(2n —4) --- 42"

= (-1

Hence, we have the following general formula

' e

&R, 1) =A1ds -+ ApEn +(—1)" @ = 9@n —4) - 42

n—1

(2.23) +,;<—1>“< 2 Agdy - Agl)

ilvi2~"'~in—k
2V Ens
m+k—=2(n+k—4)---(n+k—2k)"
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In particular, for n = 2 this result coincides with (2.8). For n = 3 we have
®(R, 1) = drA14245 — I* — 2rl(A14, + A14s + A.45)

(2.24) 2
+ 30(4: + 4, + 4,).

3. First problem. We can now solve the first problem (i) stated in the intro-
duction. Denoting by the same letters either sets or their measures, we consider,
as in [1] and [4], the set Y of points of R that do not belong to X. We have
jdentically:

(3.1 X+ Y =R.

The general method of Robbins [3] taking into account (2.2), gives immediately
the first moments

(3.2) E(Y) =R (1 — %)N, EX)=R {1 - (1 - %)N},

where R = A4, , R’ = (41 4+ 25) (42 + 28), 0 = ab.

Our remaining problem is that of evaluating the second moment of X. Let
Zi,Yi,p: 2 =1,2,3, .-+, N) be the coordinates of the N rectangles p (section 2)
and let us put, as in (2.1), dp; = dxdyde;. Let P(z, y) and Py(zy, o) be two
points which belong to R and let us put dP = dz dy, dP, = dxody,. Let us
consider the following multiple integral

J — fdePodpldpz e de
(2nR')¥

extended over the sets of rectangles p; (congruent with p) such that z; , y; belongs
to R’, 0 < ¢; < 2, and do not contain either P or Py. That is, the domain of
integration of J is defined by

3.4 =86 <z < AL+ 6, —§<yi<A4:+35  0<L g > 2n,
3.4
PeR, Py e R, P¢pi, Py ¢ pi, (t=1,2,---,N).
In order to calculate J, we can first keep the rectangles p; fixed; the points P
and P, can then vary independently over the set of points ¥. That gives

Y dpidps -+ - d,
©.5) 1= [ - B

(z;y;)ER/

(3.3)

We can now reverse the order of integration, an operation which is obviously
justified in this case. Keeping P and P, fixed, we can vary each rectangle p;
over the set of positions in which it does not contain either P or P, ; letting I
denote the distance PP, , we have, according to (2.5),.

(3.6) J = f (1 - f"-’f——"zﬁf"—’b) ¥ PP,

PeR,PgeR
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In order to evaluate this integral we divide it into two parts J = J1 + J2,
accordingas0 <! < dord <1< D, whered = (a’* + ¥and D = (4] + Ag)*.
In the interval 0 < I < d we introduce the new variables of integration I. 6
related to z, ¥, % , Yo by

3.7 g = & + 1 cos 0, Yo=1y + lsin @
whence

3(:17, Y, %o, 1/0) =1
. a(x’ y’ l’ 0)
In terms of the new variables we have
4mp — u(p, l))”
= - M 0.
Jy f <1 ) {dldP d

In this integral the point P can vary over the intersection of K with the figure
obtained by translating R a distance [ in the direction 6; that is, the integration
of dP gives the function F(R, [, 6) defined in section 2. According to (2.6) we
therefore have

d _ N
(3.8) Jy = fo (1 - @T_gf”’l)> o(R, D1 dl,

where u(p, [) is given by (2.4) and ®(R, I) by (2.8).

In order to evaluate J; we observe that in the interval d < 1 < D u(p,l) =0
and we have .

20\" % N{ongd
Jy = (1 _§> [ dePo=(1 —F> ! f dP dPy — f dePo}.
d<i<p 0<i<d

Further we have

3.9) f P dPy = R’

0<I<D

and with the change of variables (3.7) and the formula (2.8) we find that

- d
310 [ arap, = fo ®(R, Dl dl = TAdr d® — ‘; (4 + Ao & + %dﬂ

0<i<d

Collecting (3.8), (3.9), (3.10) and taking into account (3.5) we have

B = | ’ (1 — dmp ~ ko ) Z))N (R, )l dI
G.11) ’

N
+ ( - 127") (R* — ndyds & + $(41 + Ay) & — 3d},
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where p = ab, R = A:14,, R’ = (41 + 268) (A5 + 20), u(p, 1) is given by (2.4) and
®(R, ) by (2.8).
For the variance of X and of ¥, we have by (3.1) and (3.2)

ox = EX? — E¥X) = E(Y’) — EXY)

— — pp, ) _ 20\"
f ( e e ) a(R, l)ldl+(1 R,)

2N
AR = ndy Ao’ + HAA)E — 3 — R? (1 - 1%)

which completes the solution of our first problem stated in the introduction.
.4. Second problem. In order to solve the second problem (ii) stated in the
introduection we will follow the same method of the preceding section.
Let X be the intersection of the set theoretical sum of the N n-dimensional
spheres S, of radius r with the n-interval B. Let us call Y the set of those points
of R that do not belong to X, that is,

(4.1) X+ Y=R.
The general method of Robbins gives immediately

42)  EY) = R( S )N, E(X) = R{l - (1 = Sjé'—}')v}

where R = [[ A:, R’ = H (A; + 28), and S,..is given by (2.9).
1 1

We now proceed to calculate E(Y?). For this purpose let @(y1 , v PR yl,_,)
and Qx(y} , 4%, -+ - , %) be two points which belong to R and Pi(x{ , 23 , -+ , %)
be the centers of the N spheres S,.,,. Letusput

(4.3) dQ: = dyidys - - dyl, (G =1,2), dP;=dxidz;---dzxs,(i=1,2,---,N).

Consider the integral

dQ1dQ:dPydPy - -+ dP
(44) J ':f Ql Q2 }e/N‘z ~

extended over the domain defined by
QeR, QeR, PieR, QP;>r, QP:>r, (¢=1,2---,N).

If we keep Py, Py, P3, - -+ , Py fixed, each point @, , @; can vary independently
over the set Y'; consequently we have

4.5) 7= f Y?dP;dP; - -+ dPy
P;eR

R = E (Y".

On the other hand, if we keep @ and Q. fixed, the integral of each dP; gives
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R — 2 8., + w(8Sn,, ) where u(S,., 1) is given by (2.12) and I = @,Q..
Hence we have

_ _ ZSn,r - ﬂ(Sn.r,l N
4.6) J = fq o (1 _—T—> dQ; dQ:.

In order to calculate this integral we split it into two parts J = J1 4+ J2,
according as 0 < ! < 2ror 2r <1 < D, where D = (2, A%}, In the interval
1

0 <1 £ 2r we introduce the new variables of integration I, ¢1, @2, * <+ , ¢n1
related to 1, ¥3, - Yn, Ui, Y2, *** > Yn DY

(4~7) y2t = y’;+l£n (7'= 1, 2:"' ’n);
where £;1s given in (2.17). Itisfound that

a(yir yé, "'rylna yiy?)g, h ,yi) — ln—l si

n—2 o ne=3 .
n s «s+ SIN 2.
3(?/%,?/%» "‘7y1n;l,§01, "-(01.._1) #1 ¥2 ¢n

Hence we have,
(4.8) dQdQ, = 1" dQidedl,

where do denotes the element of area of the n-dimensional sphere of unit radius,
given by (2.18). The same method used in section 3 gives

2r N
(4.9) Ji= fo (1 _ 25ar “é‘,(s'*"’ D) o(R, )" dl,

where ®(R, 1) is given by (2.23).
In theinterval 2r <1 <D u(S.y,l) = 0and we have

28..\" [ o _ 28..\"
Ja = (1 R ) ~/;r$lSD dQdQs = (1 TR )

' {-/;szsn dQuae — [ dQlsz}.

(4.10)

Now we have
(4.11) f Qs dQ: = R?
0<!<D
and with the change of variables (4.7) we readily find that
2r
(4.12) [ aeae=[ s@ira
0<i<2r 0

Collecting (4.9), (4.10), (4.11), (4.12) and taking into account (4.5) and
(2.23) we have
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2r N
EY’) = fo (1 — 2 “;,(‘S""’ l)) ®(R, HI" dl

2Snr N 2 2" rn 23nr2n
1-— : —_ — (—=1)"
+( R’) {R n BB — (=1 (20 — 2) ... 4.2

(4.13)

n—1

- ]Z; (—l)k ( E . AixAiz e Ai,._,,)

11,82, "y =k
2n+2k En—k rn+k
Mt Rm+ k-2 - (n+k —2k>}

where R = IIIA,- ,R' = I;I(A,- + 26); S,.,isgiven by (2.9), E,. by (2.20), 1(Sa.r , 1)

by (2.12) and ®(R, 1) by (2.23). In particular, for n = 2, we obtain the value
given by Robbins (3, (30)], by use of (2.8), (2.15) and the equations S, = =7,
E; = 2. For n = 3, the case of ordinary space it follows from (2.16), (2.24)
and the equations Ss, = 4 =r°, E; = 4 7, By = 2 =, that

2r 3 2 3\ N
B = [ (1 o el = "’) <4WR — I — 2r(A14s + 414,

3\ N
+ Ao 43l + g (A; + 4. + A::)l“’) ’dl+ (1 - % {R2
(4.14)

- %g 7l'1‘37‘3 + 81['(A1A3 + A2A3 + AzAa)T4

25
- T5—6 (A1 + Az + Ag)P° + 33—2r°}‘.

In this case the exact evaluation is easy if one expands the binomial under the
sign of the integral and integrates term by term.

From (4.1) we see that ox = E(X?) — EXX) = E(Y® — EY). Thus,
from (4.2) and (4.13) we obtain immediately the second moment E(X?) and the
variance oy of X.

6. Remark. In the second problem we can substitute the n-intervals R and
R’ by concentric n-dimensional spheres. The problem may then be stated as
follows:

Let Sn.. denote a fixed n-dimensional sphere of radius ¢ and S, .+s the con-
centric n-dimensional sphere of radius @ + 8. S,,. and S, ,.+s shall also denote
the corresponding volumes. Let a fixed number N of n-dimensional spheres
with radii r (r < min (a, §)) be chosen independently with the probability density
function for the center of each S, . constant and equal to 1/S, .45 in S, a+s
and zero outside this n-sphere. Let X denote the intersection of the set-theo-
retical sum of the N n-spheres with S, ,; we wish to evaluate the first two
moments of the measure of X.
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It suffices to observe that in this case we have
(5.1) ®(Sna 1) = W(Sue, DEn = 20 Sposa B [ sin® 0.0
where S,_;,. is the volume of the (n — 1)-dimensional sphere of radius a and

a = arc cos (I/2a).
The same method used in section 4 gives

(5.2) E(Y) = Sna (1 - §—>N E(X) = sn,.,{l - (1 L)N}

Sn,a+§ B Sn,a+3
2r _ N
B = [ (1 — B “(S""’l)) B(Sha, DI dl
0 Nn,0:
(53) " 2S N 2r
+ <1 - ) {32 — | ®(Sna, )" dl},
Sn,a+6 0

where ®(S,,., 1) is given by (5.1).
In particular, for n = 2, by use of (5.1), (2.15) and the indefinite integrals

f arc cos (I/2a)l dl = (3I* — o arc cos (I/2a) — L 1(4a® — )} + constant,

f Plag® — P dl = —1(da* — D)} + dall(dd? — B)}

+ 2a* arc sin (1/2a) + constant
we find that

2r 2 __ 9,2 1 2 72\%
By = 2x [ (1 - BT IR MO 2 1) 00 a2

2 N
— 1(4® — lz)%>ldl + <1 - (a—2—l§6—)2) {11-2a4 — 2r (2a2(2r2 — a%) arc cos (%)

—3a*r(@® — ™ + 7d* + 2r(a® — ) — a*are 'sin(r/a))}.

For n = 3, we have by (5.1) and 2.16)

r 167" + 1201 — B\¥
2y _ 4 3 _ 2 1 _73\72
E(Y") = 47r£ <1 6(a T o) (5ma ma"l + 5wl dl

2r u 6 ; 3.3 2.4
+ 4r (1 — m) {%wa — 327201 + dra’rt — Emr%p.

From (5.2) and (5.3) with the use of the relation o = E(X?) — EXX) =
E(Y" — E)Y) we obtain immediately the second moment E(X®) and the
variance oy of X.
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