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1. Introduction. The Type B series of Charlier has been discussed in some
detail in the literature (See references at the end of the paper). The problem
of the convergence of the Type B series has been considered by Pollaczek-
Geiringer [12], [13], Szegd [12] (page 110), Uspensky [16], Jacob [5], Schmidt [16]
and Obrechkoff [11]. There is presented in the following a method of develop-
ment of the Type B series which is believed to be of some interest, including a
necessary and sufficient condition for the convergence which is basically the
same as that of Schmidt [16]. A result of Steffensen [17] is extended and shown
to be related to the Charlier Type B series.

2. Statement of results. Consider the function p(r), defined for r = 0, 1, 2,
- -+, and such that
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where A is some finite value.. Let the n-th factorial moment be defined by
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We prove the following results:
THEOREM. A necessary and sufficient condition that the function p(r) of (2.1)
may be expressed by the absolutely convergent series
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converges where L, 1s defined as in (2.3).
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3. Generating functions. For the function p(r) of (2.1) consider the gen-
erating function defined by

3.1) o) = 37 p0)

where z is a complex variable. Because of (2.1) it is clear that the right member
of (3.1) is uniformly and absolutely convergent for [z | < 1 so that the radius
of convergence of (3.1) is some value B; > 1.

The Taylor expansion of ¢(2) about the point z = 1 is given by

3.2) o) = o) + = Do/ + ES L gy 4

where, as may be readily obtained from (3.1),
3.3) QM) = Zo o — 1)@ —2)- 0 —n+ Dpl) = s -

If it is assumeéd that (2.5) converges, then
1)

(z—1)"
n!
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is uniformly and absolutely convergent for |z — 1 | < 1.
4, Sufficiency. For arbitrary X let us set
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where the right member, because of (3.4) is absolutely convergent for

|z — 1| £ 1. The coefficients on the right side of (4.1) are given by

)

(4.2) L. = pwy — M- N + _(n_2_

and the factorial moments may also be expressed by

Ba—p N — <o (=1)"A"
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These relations are reaaily derived by expressing (4.1) symbolically as
4.4 G N—D +ueD _ LD

where after expansion x" and L" are to be replaced by um and L, respectively.
(Cf. Jordan [7], p. 39). From (4.1) and (3.4) there is now derived

(4.5) o) = &P (1 FLe-D+EE-1 )
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Since  the right member of (4.5) is absolutely and uniformly convergent for
|2 — 1| = 1 for arbitrary A, it may be expressed as

(4.6) e(2) = (1 + Ll + L, & +. ) 2D
21 a2

Since the radius of convergence of the right member of (4.6) is some value R,
suchthat |z — 1| < Ry > 1,it may be expressed as a power series about z = 0, or

22
an w0 =(1+n g+ mE ) (1 )

Recalling now the definition of ¢(z) as given in (3.1), there is obtained by equat- (
ing coefficients of like powers of z in (3.1) and (4.7)

_ L, & e\
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Since it may be readily shown that
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we may also write (4.8) as
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6. Necessity. Assume that the function p(r) of (2.1), for arbitrary A, is
given by the absolutely convergent series

L e\
(5.1) p(r) = (1+Ll + 2fw + - ) T

Since ¢ ™\"/r! is continuous with respect to A, there follows, where z is a complex
variable and |2 | = 1
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where

(5.3) Mn=L,.+nL_1>\+’“L2,*—9Ln_zx’+--- + ™

From (5.2) it follows that

(5.4) Mn = Mn)

where p is as defined in (3.3). Since (5.1) becomes forr = 0, A = 0
1 1

(5.5) 1—pow + g1k — ke + -

the assumed absolute convergence implies that
1 1 1
(5.6) 14+ |py |+ 2_!|M<2) | + Y [ww |+ - +;!|#(n) [ 4 ---
converges.
6. Remarks. Obrechkoff [11] shows that his result includes those of Pollaczek-

Geiringer [12], Szego [12] (p. 110) and Jacob [5]. His theorem states that if
the function p(r), (r = 0, 1, 2, - - -), satisfies the following conditions

(6.1) Z::l 21" | p(r) |

is convergent for each finite number A4, and

@) 321000 | (g0 /1)
s SO

tends toward zero as n increases mdeﬁmtely then p(r) may be expressed in a
convergent Charlier Type B series. '
Uspensky [18] shows that if

(6.2)

63) PISE

has a radius of convergence R > 2 then p(r) may be expressed in a convergent
Charlier T'ype B series.

Schmidt [16] shows that a necessary and sufficient condition for the convergence
is that the function ¢(2) defined as in (3.1) (he does not explicitly impose the
condition (2.1) on p(r)) be regular inside the two circles |z | < land [z — 1| < 1
and with all its derivatives is continuous on the peripheries also. In the case
that p(r) = 0, the condition (2.5) is stronger, in fact in this case Schmidt [16]
shows that a necessary and sufficient condltlon is that

lim p(r)2" ¥ =

=00
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for all integral ¥ = 0. If p(r) = 0, then Uspensky’s condition is only just
enough stronger than Schmidt’s to keep it from being sufficient.

If (6.1) is satisfied, or if (6.3) is satisfied then (3.1) is absolutely convergent
for |z | = 2. Therefore, the point z = 2 is contained in the circle of convergence
of (3.2) or (3.4) which implies that

1 1
14+ |p | +2_!|#(2)|+ +;!|I-¢(n)|+ e

converges.

It is deemed worthy of special mention to point out, as both Schmidt and
Uspensky have done, the striking fact that the necessary and sufficient condition
for the validity of (2.4) is independent of A. This arbitrariness of A enables us
to dispose of it so as tb obtain better convergence. Indeed if we set A = puq
then as is evident from (4.2) L, = 0.

7. Special cases. It is of interest to note that (4.8) is the Taylor expansion
if p(r) = ¢*u’/r,, @ =0,1,2, -+ ), for then (4.2) becomes
(7.1) L= (g —N"
since for the Poisson Exponential Distribution ¢™*u’/r!, (r = 0, 1, 2, --+),
e = u” and (4.8) is then
et e N de N | (w=N8 e

(7.2) AT T Ng Tt T e

If p(r) is finite, that is if p(r) = Oforr > n 4+ 1 then pyy = Ofork > n + 1.
Thus, for a finite function the condition (2.5) is satisfied.

+ s

8. Factorial moments. For functions p(r), (r = 0,1,2, - - -), satisfying (2.5),
there may be derived from (3.1) and (3.4) the relation

(801) T'p(r) = K@) T M4 + 21'“(r+?) - 31‘/‘(1'-!3) + .- ’ (7‘ = 07 17 2} . ')1
since each side is ¢®(0) derived respectively from (3.1) and (3.4). It should
be noted that for A = 0 (4.5) leads to (8.1) rather than (4.8) so that (8.1) may
be considered as the Charlier Type B series for A = 0. The result (8.1) was
derived for finite functions by Steffensen [17]. (Also compare Kaplansky [8]).
This may also be expressed symbolically by

(8-2) P(T) = "re—u/r!’ (7‘ = 07 1) 27 ° ')7
where after expansion u" is to be replaced by uy . It is of interest to note the

relation between the symbolic expression for p(r) as a Poisson Exponential in
(8.2) and the series (4.8), for (4.8) may be expressed symbolically as

~AyT
63 pr) = @ . e_r'>\ — ™D (\ L)/l
= u e */rl

since e*““*“f(x) = f(x + a) and the relations (4.2), (4.3), (4.4).
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9. Illustrations. Consider the function

9.1) p(r) = 1/2" r=0,1,2 --).
For this function .

9.2) ol2) = ;z'p(r) =1/(2 — z}

and

(9.3) ¢"(1) = pw = n!

so that (2.5) becomes
(9.4) 14+1414---

which does not converge. (It may be of interest to note that for this case
(8.1) yields

(9.5) p0) =1—-141—-14+1— ...,

The series on the right in (9.5) is not convergent but is summable C; to 4. For
the latter see for example R. P. Agnew, [19].) In this case the first several co-
efficients of (4.8) are for A = 1,

L =0, ’;12, — 5000, gj — 3333, % = 3750
oo Lo _ 3667, L*_ 3631, 17— 3679
51 = O00h g T 08L g = .36,
Let us now consider the function
(9.7) pO) =13, pi) = 34, r=1,2--).
For this function
08) @) = 0 = b+ 55
and
(9.9 ™) = uw = ;%1(:%)’ (n=12-..),

so that (2.5) becomes

9.10) 1+ (g)%
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which converges. For this case (8.1) yields

o - Qb+ Qb b+ -

©.11 3\1 3\1 , 31/3\1
={2)> —21{2)= BV L ... =

(1) (2)2 2'(2)22 * 3 2)2' =3
ete. v .
In this case, the first several coefficients of (4.8) are for A = 0.75

_ Ly _ L, _ L, _

Ly = 0, 5 = 1093750, 3= .046875, - .019043

9.12) L L L

= 2 _ s

Bl = .010840, Bl .005173, T .002622,
Let us now consider the function (suggested by Prof. C. Wexler)
=95 — (-1 3(2Y =
01 20 =3 0= 3(3) =132 ).
For this function
(9.14) gp(r) =1, Z; [p(r) | =5
(9.15) o) = 22 p) = 5/ + 2)
9.16) o™ (1) = pw = (— 1)"ni@/5)"
In this case (2.5) becomes
: 2 2\* 2\*

9.17) 1+ 5 + (5) + (5) + -

which converges and (8.1) yiel,ds'
2, (2Y | (2 _
P(0)=1+3+(5)+(3)+“'—5/3

9.18) N
p(l) = —2/5 — 21(2/5)* — 2.! @/5)° — v =—

.

Wl o
Wi N

ete.
Note that for this case (6.1) or (6.3) are not satisfied. Using A = 1, it is

found that

(9.19) L, = —14, Ié—? = 1.06, L _ —.5906, = = 2779, --.
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