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1. Summary. Given a set of ¥ random samples, z;, %3, -+, 2, from a
binomial distribution with parameters p and n, it is shown that the familiar
binomial index of dispersion

k

zl: (x; — :72)2

yields an approximate best critical region independent of p for testing the
hypothesis n = n, against the alternative hypothesis n > n,, provided Z and
ny — & are not small. Because of the nature of the test, its optimum properties
also apply to testing whether the data came from a binomial population with
n = my or from a Poisson population.

z2 =

2. Introduction. A problem of considerable interest in certain fields is that
of deciding whether a set of observations should be treated as having come from
either a binomial population or from a Poisson population. Although there was
much discussion a few years ago concerning the best method for making such a
decision [1], [2], [3], no solution of the problem was presented. In this paper a
test that possesses certain optimum properties is derived for discriminating
between two binomial populations. This test, however, is also capable of solving
the problem of how to discriminate between a binomial and a Poisson population.
The methods that are employed in the derivation of this test are similar to those
of an earlier paper [4] in which the problem of discriminating between two Poisson
populations was studied. '

3. Similar regions. Let n denote the number of trials and p the probability
of success in a single trial for a binomial distribution. Letx,, 2, -« -, zx repre-
sent the observed frequencies in k¥ random samples from this binomial population.
Now consider the two alternative hypotheses

Ho: n="N,pPp = Do
and

H:n=m>n,p=n.
The purpose of this paper is to construct a test for discriminating between the two
values of n regardless of the values of p; however it is convenient to begin with

these more restrictive hypotheses
556
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For the purpose of finding a critical region for testing H, against H, , the z;
will be treated as the coordinates of a point in k¥ dimensions. The probability of
obtaining the particular point ;, --- , 2 when H, is true will be denoted by
P, [z]. Since the probability of obtaining z successes in n trials is given by

n! z . n—z
zl(n — a:)!p q

it follows that
(nol)® 3 %("o-zi)

1 Plz] = 74— po* @
@ ‘ I’iIxi! (o — x;)!

In searching for a critical region that will be independent of p, , it is illuminat-
ing to study the methods that were designed by Neyman and Pearson [5] for
continuous distributions. These methods suggest that one should look for criti-

k

cal regions on the surfaces >, z; = constant. For this reason, instead of
using (1) for constructing criticlal regions, it is desirable to study the conditional
probability distribution of the points lying in the plane i z; = N, where N is a.
positive integer not exceeding kno. The conditional I:robability of obtaining
the point x; , - - - , zx , when the point is restricted to lie in the plane Zk: z; = N,
will be denoted by Po[z; | N]. Its value may be obtained by dividing 1the proba-
bility (1) by the probability that the point will lie in the plane i zi;=N. If
this latter probability is denoted by Po[N], then '

Pylz]
PN]’
Since the sum of k¥ independent variables each possessing the same binomial dis-

tribution has a binomial distribution with n replaced by kn, it follows that N
possesses a binomial distribution and that

(2) Pyl l N] =

@) : Py[N] = j\fr(;%@l—[*m—! po g0 .

If (1) and (3) are substituted in (2), it will reduce to
DeN!(kny — N)!
® Polus | N] = (no)) A (kmo ) .
(Fmo)! III ;! (g — ,)!

k
This conditional probability distribution in*the plane Y z; = N is independent
1

of po and therefore may serve as the basis for constructing a critical region that
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is independent of p, for testing H, against H;. It will therefore be possible to
test the less restrictive hypothesis

Hy:n=mng
against
Hi:n=mn>n,.

4. Best critical region. Although a best critical region does not exist for
testing Hy against Hj , it is helpful to proceed as though one did.

k
If a critical region of size « could be selected in each plane Y, z; = N,
1

(N =0,1, ---, kng), then the totality of such critical regions would constitute
a critical region of size « that is independent of p, and which therefore could be
used to test Hy against Hy . For, if P, [X ¢ C.R.] denotes the probability that
the sample point, which will be denoted by X, will lie in the critical region, it
follows that

kno

Pl XeCR] = gﬂ Py[N]Py[X ¢ C.R.| N]

kng

2 PyNla

N=0

)

I

= .
This last equality follows from the fact that the sample point must lie in one of
k

the planes )_ z; = N, (N = 0,1, -+, kno).
1

Furthermore, this would be the only critical region of size a independent of
Do , because if a critical region of size ax, (N = 0, 1, - - -, kno), were selected in

. k .
the plane D z; = N(N = 0,1, - - - , kno), it would be necessary that
1

kno

Z PO[N]aN =

N=0

independent of the value of po. From (3) this is equivalent to requiring that

kn
> (k’no) ! N — kn'o—N —
© NZ.(:» Ni(kno — N1 P 1 =p)"" Van = o

independent of the value of po. Since the left side of (6) is a polynomial in p, ,
its constant term must equal « and all other coefficients must vanish. It will be
observed that no terms of the sum in (6) that arise from N > r will contribute to
the coefficient of pj ; consequently this coefficient will not contain the unknowns
Qr1 5 **° 5 Qkmy - These considerations show that the ax must satisfy equa-
tions of the form
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a = Coo

Co a0 + ci1 o

0 = Cingoao + Cngran + =+ + + Cnghno Qhn, -

It will also be observed that ¢,, = (kno) !/r!(kno — 7)!; consequently the triangular
matrix of the coefficients in these kno + 1 non-homogeneous equations is non-
singular. The equations therefore possess a unique solution, namely the known
solution of ay = a.

The preceding disc;cussion shows that it is necessary to find critical regions of

size a in each plane D, z; = N, (N = 0,1, --- , kno), if a critical region indepen-
1

dent of p, is desired. If each-such planar critical region were a best critical
region for that plane, then the totality of such regions would constitute a
best critical region independent of p, for testing H, against Hj ..

It follows fl;com the theory of best critical regions [5] that if a best critical region

in the plane ) z; = N did exist, it would be determined by the inequality
1

Polz; l N]
Q) P V] <K,

where P; corresponds to Py when H, is true and where K is a constant whose value
is chosen to make the critical region one of size «. Now from (4),

@® Pofa| N1 _ (no)*(kng — N)! (k) | Tl(my — )1
Pixi[N]  (m)*(kny — N)!(kno) T (no — z) !

In order to study the possibility of a best critical region, it is therefore neces-
sary to study the possibility of (8) satisfying inequality (7).

6. Approximate best critical region. Unfortunately, because the variables z;
are discrete, it is not possible to find critical regions of exactly size « for arbitrary
« as required in (5). Consequently it is necessary to introduce continuous ap-
proximating functions for discrete probability functions or to resort to other
devices if critical regions of the type discussed in the preceding section are to
be obtained. '

For the purpose of introducing such appfoximations, (8) will be written in
the following form:

Polas | N] _  (kng — N)U(IN™™Y (b — N)1(1\™7"
©  FEm e @) i)
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where ¢, is independent of the variables z;. It will be observed that the ratio
on the right is a ratio of two multinomial functions. Now the multinomial
function

N! 1,z Zh
xllle---xk!pl P2 LR

k
where ; z; = N, can be approximated by the multivariate normal function

5]
(21I'N)‘(k —1) _\/p ?2 ¢

The approximation is good provided the Np; are large and the z; remain away
from their extreme values. If this approximation is applied to both numerator
and denominator of (9), to this order of approximation,

k2 1 : _E_—Jv/k_ !
Pl M _, * eexP[ 2 (\/no = N/'k)]
1l | N] [27(kno — N)P%-D
k

#reon| 13 () |
an N e = NPT

= ¢ [k"’l - N]“k_n eex [._; ™ — Th
ke — N Pl 7% u = N/B)(mo — N/B)
k

. ZI: (2 — N/Ic)’].

Since, by hypothesis, n1 > no and ny > N/k, except for the case of ny = N/k,
which will be considered later, it follows that

(10)

ny — Mo
(ny — N/k)(no — N/lf)

.k
As a consequence, the right side of (11) will decrease in value as >, (z; — N/k)?
1

increasesin value. If (z;, --- , xx) is a point lying on the sphere
. k
(12) ; (x; — N/k) =R

" and if the coordinates of this point satisfy inequality (7) when approximation

(11) is used, then all points outside this sphere will also satisfy (7) to this same

order of approximation. A best critical planar region of size « in this approxi-
k

mate sense can therefore be obtained in the plane Y ; = N by determining a
1
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sphere with center at (N/k, - - - , N/k) such that when Hj is true the probability
i8 o that a point lying in the plane will lie outside this sphere. Furthermore, such
a region will be a common best critical region for all values of ny > o because
the preceding arguments do not require the value of n, but merely the knowledge

that n; > no .
For the purpose of determining the radius of the sphere that will yield the
desired critical region, (4) will be expressed as follows:

@  eiw=ag () =0T

where c, is independent of the z;. If these multinomials are replaced by their
multivariate normal approximations as given by (10), to this approximation
(13) will reduce to

Po[x.'IN]=0333Xp[ Z,::(\/_Ek{k)]eexp[ %E<$}o Nlcl;k)]

(14) f: (@ — N/k)*
=ceexp| —4% I

N N
3 (1 - m)

where c; is independent of the z;. Since Z z; = N here, z; may be expressed
1

in terms of the remaining variables; consequently (14), except for a constant
factor, may be treated as a normal distribution in the variables ; , - -+ , Zx—1 .
If the factorials in c; are replaced by their Stirling approximations, it will be
found that c; is the correct constant for the normal distribution.

Since it is known [6] that —2 times the exponent in a normal distribution func-
tion possesses a chi-square distribution, it follows that to this order of ap-
proximation .

; (x: — N/k)?

HEE)

possesses & chl-square distribution with & — 1 degnees of freedom. If x% is a
value such that Plx* > x%] = a, then

) Zl: (x; — N / k)2
(16) -IY(_l-—_E-—j- = X?z
k knyg
determines a sphere such that to tilis order of approximation the -probability is
a that a point lying in the plane ; z; = N will lie outside the sphere. From
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the arguments following (12), it therefore follows that a common best critical
region in this approximate sense for testing Hy against H; will consist of that
k

part of each plane Zl: z;=N,(N=0,1, -, kng), which lies outside the cor-

responding sphere given by (16). Since the z; are non-negative and do not
exceed 7, , the planes corresponding to N = 0 and N = kn, contain a single
point; therefore it is necessary to adopt some convention that assigns 100« per-
cent of the samples with N = 0 and N = kn, to a critical region in order to obtain
critical regions of size « in these two cases.

For a given set of data, the procedure to be followed then consists in calcu-
lating the statistic

—Z’::(x;—a':f
o(-2)

k
where & = D x;/k, and agreeing to reject the hypothesis that n = n, in
1

4

favor of the alternative hypothesis that n > n, if and only if z > x% , where
Plx* > x4] = a for k — 1 degrees of freedom. Because of the nature of the
approximations used in (10) and (14), this result may be expected to be accurate
only if Z and ny — % are large.

The interesting feature of this result is that the familiar binomial index of
dispersion, z, possesses optimum properties in this approximate sense for testing
n = ng against n > ng .

6. Poisson application. Since the preceding test will possess approximate
optimum properties for n as large as desired, independent of the value of p,
and since a Poisson distribution with parameter m can be approximated as
closely as desired by means of a binomial distribution with np = m by allowing
n to increase sufficiently, it follows that the test will also possess approximate
optimum properties for deciding between a binomial distribution with n = ng
and a Poisson distribution.

7. Estimationof n. Although the purpose of this paper has been accomplished
in the preceding sections, it is interesting to observe the role played by the closely
related Poisson index of dispersion in the extimation of n.

Approximate confidence limits for n may be obtained by means of (16).
If xi_a is a value of x* such that P[x* > x}_o] = 1 — a, then, to this same order
of approximation, the probability is 1 — 2« that

; (z; — )°

Xi-a < < X
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If these inequalities are solved for n, the following 100(1 — 2«) percent approxi-
mate confidence limits for n» will be obtained:

= 2 = 2
TXa TX1—a
17 <n< .
a7 2 Z(z; — %)* " 2 Z(z: — %)?
Xa 3-7 Xl—a fl'?
Only the lower limit here will possess optimum properties. Now it will be ob-

served that only positive values of n will be admissible if

whereas only negative values will be admissible if

(2 — 57)2 2
LA S
Z Z Xa
The range of values will be infinite in each case if there is equality rather than
inequality. If, however,
=\2
< 2B o,

X1—a po
x

then both positive and negative values of n over infinite ranges will be admissible.
Since n increases as the Poisson index Z(z; — #)?/Z increases until it becomes
infinite and then increases from minus infinity through negative values, (17)
may still be thought of as giving an interval (infinite) of values with a positive
“lower” limit and a negative ‘“upper” limit. Thus, the familiar Poisson index
of dispersion plays an interesting role in determining whether a Poisson assump-
tion is reasonable as far as admissible values of n are concerned.

If the population is truly binomial, negative values of n» must be ruled out;
consequently a Poisson assumption becomes increasingly tenable as the Poisson
index increases. However, experience has shown [7] that a negative binomial
distribution is often more realistic in describing data supposedly drawn from a
binomial or Poisson population than is the assumed distribution; consequently
a negative binomial should be given consideration if (17) yields only negative
values or if it yields a negative “upper’ limit that is numerically small relative
to a positive “lower” limit.

It is also interesting to consider the point estimation of n. Here, it is cus-
tomary [7] to estimate n by means of

kz
r— >(x; .— f?)zj
Zz

Thus, a positive, infinite, or negative estimate for n will be obtained according as
the Poisson index is less than, equal to, or greater than k.
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