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where B(m, }) is the complete Beta function.
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Thus, we have:

=
It is obvious that the development is general and applies to m random points

in any bounded two-dimensional Borel set. However, the lower bound ob-
tained will, in general, be useful only when S is a connected region.
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A MATRIX ARISING IN CORRELATION THEORY!
By H. M. Bacon

Stanford University

1. Introduction. In the study of time series, it is frequently desirable to
consider correlations between observations made in different years. Let za,
Za, ** , Tim be m values of the variable x;, expressed as deviations from their
arithmetic mean, where z; is a variable observed in the ¢th year (4 = 1,2, - - - , n).

1 A linear correlogram is considered by Cochran in his paper, “Relative accuracy of sys-
tematic and stratified random samples for a certain class of populations,” (Annals of Math.
Stat., Vol. 17 (1946), pp. 164-177) in which p, = 1 — % Settingu = |7 — j|and L = 1/p, we

have the case considered above.
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Let o; be the standard deviation of z;. If we denote by r;; = r;; the correla-
tion of z; with z; , and if we assume the z; to be normally distributed, then

_ 1 Rijx; x;
2= (27r)n/20'10'2 et U”'\/R eXp{ g; Ro'q,a, }

is the frequency function giving the distribution. Here R is the determinant
| 7:5 | of the correlation coefficients, and R;; is the cofactor of the element 7;;
in this determinant.

We may make various assumptions regarding the behavior of the correlation
coefficients over the n years. One such assumption of some interest is that the
correlation coefficients diminish in such a way that

rij=rp=1—|t—7jlp
where p is a fixed positive number not greater than 2/(n — 1). Under these
circumstances, we can evaluate R and R;; in terms of » and p.

2. Evaluation of R. We may let R(p) represent the determinant R of order
n whose element in the 7th row and jth column is 7;; = rji = Tpinj; =
Tnojm—i = 1 — |2 — j| p where, for the purpose of evaluation, p is any real
number. Since each two-rowed minor of E(p) is divisible by p, R(p) is divisible
by p™. Furthermore, since R(p) is a polynomial in p of degree at most n, we
have

R(p) = Ap" + Bp"™ = p" " (4dp + B).

Ifwesetp =1landp = —1, we find 4 + B = R(1) and R(—1) = (—1)*
(—A + B) sothat —4 + B = (—1)""R(—1). By elementary methods we
find that R(1) = 2" %3 — n) and R(—1) = (—1)""2"%(n 4 1). Hence

A+ B=2"%3—n)
and
—A 4+ B =2"%n+1).
Solving for A and B we find that
R = R(p) = 2" " '[2 — (n — 1)p].

3. Evaluation of R;;. Similar methods yield the following values for the
cofactors R;; of the elements of R:

By = R, = 2"—317"—2 2 — (n — 2)p),

Ry =Ry = -+ =Rogaa=2""p""[2 - (n — 1)p],
Rin= Ru = 2"%"",
Riin = —2""p"2 — (n — Dp),

otherwise,
R ij = 0.
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4. The frequency function. The quadratic form appearing in the exponent
in the expression for the frequency function can now be written as
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5. Maximum likelihood. The expression z is the likelihood of getting a

particular set of values of the variables 1, xz, -+, 2. . It is often important
to regard the r;; and the o; as parameters and to determine them so that the like-
lihood will be & maximum. If we assume 6y = 02 = -+ = 0, = o, then

2 = ——l_iexp J— .]_'i 3 Rijzixj
2n)"* "v/R 254 Rer [
The question, in our case, now becomes, What values of p and ¢ will make z
a maximum for given z; ? Necessary conditions are that g-z- = 0 and gg = 0.

Since R;; and R are given in terms of p, the process of differentiation can be carried
out (first take the logarithm of z), and values of p and ¢ necessary for a maximum
determined. It is, of course, possible that 2z has no maximum, and the sufficiency
of these values must be tested. The computations for the general case are
laborious, though straightforward. Furthermore, because of the complicated
nature of the coefficients in the equation to be solved for p, the general solution
is not readily obtainable. This equation is, however, of third degree, and it can
be solved in any, particular case.
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TABLE OF NORMAL PROBABILITIES FOR INTERVALS OF VARIOUS
LENGTHS AND LOCATIONS

By W. J. Dixon
University of Oregon
1. Introduction. The probability associated with a particular finite range of

values is often desired. The usual tables of normal areas gives values for L or



