GENERALIZATION TO N DIMENSIONS OF INEQUALITIES OF
THE TCHEBYCHEFF TYPE

By Burron H. Camp
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1. Summary. The Tchebycheff statistical inequality and its generalizations
are further generalized so as to apply equally well to n-dimensional probability
distributions. Comparisons may be made with other generalizations [1], [2]
that have been developed recently for the two-dimensional case. The inequal-
ities given in this paper are generally as close as the most favorable corresponding
inequalities that exist for the one-dimensional case and in many simple cases
they are closer than those that have been given heretofore for two dimensions.
In a special case the upper bound of our inequality is actually attained. The
theory contains also a less important generalization in one dimension.

2. Introduction. It is necessary to introduce a new kind of moment, to be
called a “‘contour” moment, which is a generalization of the usual one-dimensional
moment. If we consider first a simple two-dimensional frequency surface,
y = f(t , t:), we may think of y as a function of a single variable, z, where z is the
area of the contour on that surface at the y level. This function may be defined
8o that it is monotonic decreasing and éas other simple characteristics. Then
we define the rth contour moment as

ar =f z'y dz,
0

and then the generalization of the Tchebycheff-type inequalities follows easily.
This theory can be applied equally well to almost any single-valued function of
n variables which is limited and integrable in the sense of Lebesgue. Therefore
the theory will be enunciated initially in a very general form. The reasons for
the initial statements will be indicated only briefly because a detailed discussion
of quite similar ideas has been given by this author in another paper [3], where
he applied the same general principle to obtain generalizations of certain theo-
rems in integration theory.

3. Preliminary theory. Let f(¢, ---, t.) be a probability distribution with
limited upper bound L and defined at all points of infinite n-space, which is to be
denoted by T, dT being the Lebesgue measure of a differential element. We

thus assume that: 0 < f(¢, - - - , t,) < L, f has a Lebesgue integral in 7', and
f fdT = 1.
T
Let @, denote the set of points in T where f > \, (0 = A = L), and let z, be the
568

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to &)

A

The Annals of Mathematical Statistics. KON

WWww.jstor.org



GENERALIZATION OF INEQUALITIES 569

measure of ¢ , for @, is known to be measurable. Therefore z, = 0, ; < o,
and for each X there exists a unique @ and therefore a unique z, . This means
that x is a single-valued function of A and that it exists (or is positive infinite)
for every value of A in the interval (0 = A = L). If N > Az < 2n. This
means that z is a monotonic decreasing function of A. It need not be continuous;
that is, it may be asymptotic to the line A = 0, and it may have finite discon-
tinuities or “jumps”. Also there may be an enumerably infinite number of A
intervals in which z is constant. It follows that A is a monotonic decreasing
function of z in the interval (0 < x < 2y < ), but it may not exist (in intervals
where « has jumps), and it may be multiple valued (at points where z is constant).
We now let y(x) = A., except that: if A is multiple valued at any point z we
let ¥ have the minimum value of A at that point. Any other value would do
equally well because the total measure of such points is zero and they can be left
out of the integrals that follow. If A does not exist in an « interval, we let ¥ have
in that interval the value which it has at the beginning of the interval. Thisis a
A point where z has a jump. We have thus defined y as a single valued mono-
tonic decreasing function of = in the interval (0 < z S xy < ©)and0 <y =< L.
It follows from Lebesgue’s theory that:

/ony(x)d:c= /;nde’(O<)\ < L); /ozoy(x)dx=fodT= 1.

Finally we restrict our function f so that there shall be at most a finite number
of points z where A is multiple valued (intervals of A over which x is constant),
and hence the number of discontinuities of y will be finite. This restriction may
not be necessary but it is convenient and not embarrassing in applications.

4. Contour moments. The rth contour moment is denoted by &,. The con-
tour standard deviation is denoted by 6. We define

o
by = f 2"y dx. -
0
It follows that py = 1, and that
Zo
=06 = f 2y dx.
0

We shall also let &, = fis,/6”. We now assume that r is either zero or a positive
integer, but in much of what follows this assumption is not necessary.

Exampie 1. Let f(ty, t.) = (2r) e i The equation, f(t, &) = X,
defines a circular contour whose area is ¢ = =(f; + £3) = —2r log 2e\. Hence
y = X = (2r) %" and

m=/xwm=@wﬁﬁ=&ﬂ@=@mw.
0

5. Contour moments and one-dimensional moments. If n = 1 and if f(4) =
f(—1), then

zo (zo/2) N
b= [ atyde=2[ @O d = 2
0 0
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where sz, is an ordinary moment. Hence also & = 20, Gor = fior/6" = p2r-2"/
o2 = ay.. Itis to be noticed that, although & = asr, fzr 3 per. One
could alter the definition so that these two moments would be equal by inserting
into the definition of contour moments the factor 2", using x/2" in place of z,
but this would introduce a slight complication for a doubtful advantage. Al-
though it would seem to be desirable to define the even contour moments g,
so that they would become the ordinary moments u,. in the symmetrical one-
dimensional case, such a definition would not make the two corresponding odd
moments equal, and it would not make the two even moments equal in the non-
symmetrical one-dimensional case. So it seems better not to introduce this
factor 2", but to take note of the relationships that hold in the one-dimensional
case.
THEOREM. Let

Py = | far,
()%

where \ s such that xx = é¢. Then

2r
1—P,§a2,/(a-2’+1> )
2r

CoROLLARY 1. In particular 1 — Ps < &,/6".

CorOoLLARY 2. Ifr = 1,1 — P; < 4/98°. This theorem and these two
corollaries are minor generalizations even of the corresponding one-dimensional
inequalities, for it is no longer assumed that the probability distribution f(t)
has but one mode.

Proor or THEOREM. Let g(z) = y(x)if 0 S 2 S 29 = =, let g(z) = y(—2)
if —o £ —2yp £ 2 £0,and let g(z) = 0 elsewhere in (— «, ). Then g(z)
has all the properties explicitly required of f(z) in a former paper by this author
[4] in which this theorem was proved for the one-dimensional case. That is:
g(x) is a frequency function whose mean is zero, and

[: g(xz)dz = 2, and /; :0 g(x) dx

is the probability that |z | > do; g(z) is a monotonic decreasing function of
| z | for all values of z; and is symmetrical with respect to the central ordinate.
Therefore, transforming the symbols of that paper to our present notation, we

have
® 2r + 1\¥
< .
J owan o /(- 2502),

where
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Similarly ps, = fier , a2 = @» , and finally
®

b ©
1—-Py=1-— ydx=1—fgd:v=fgdx
0 0 .14

2r 2r
= a2r/<5 . 27.2-: 1) = &2r/(5 . 27‘2—:— 1) .

This proves the theorem except that there is one exceptional case that requires
attention. In the proof of the theorem in the paper just referred to the author
assumed that the function corresponding to our present g(x) was continuous.
At that time a “frequency” function was often thought of as determined by a
smooth curve approximating a histogram and implied even the existence of
derivatives, and so continuity was not added to the explicit requirement that
the function be a “frequency” function, but this condition was explicitly intro-
duced in the lemma on which the proof of the theorem was based, and so we do
now have to consider separately the case where y, and hence ¢, may have a finite
number of jumps. It is quite easy to handle this case as the limiting form of a
continuous case. In that lemma it was also required that d°Q/dt’ should exist
and be non-negative, which would imply that we now have to make the require-
ment that y (corresponding to dQ/dt) shall have a non-negative first derivative.
On examination of the proof, however, it will be observed that this is not neces-
sary, since y is monotonic decreasing and continuous. That is, in the lemma the
only use made of the condition, d’Q/df* = 0, was that the function Q(¢) should
determine a curve which would be never concave down. But for this it is
sufficient that dQ/dt be continuous and monotonic increasing, and these condi-
tions are now satisfied by the function which plays the réle of § in the present
discussion. This function will now be defined as

f: v(z) dz.

Let v(z) be a continuous function defined as equal to g(x) except in the neighbor-
hood of the points of finite discontinuity. Near such points it is to be so de-
fined that it shall have all the properties just required of g(z), and in addition
so that, for any prescribed R > 1 and ¢ > 0,

f 2 y(z) dz = ./o. 2 g(z) dz + 7., (1 =r £R);

f:v(:c)dx = f:g(x)dx-l—n,

where | 9, 7, | < e. It is obvious that such a definition of v may be made in
many ways, and one of them is by making use of a linear function in the neigh-
borhood of each point of discontinuity. Since ¥(z) now satisfies all the condi-
tions of the author’s earlier paper the corresponding inequality is true:

(.,;“ ’)'dx> <6 . QTQ; )2r <fowx2~ydx>r < f: 2"y dz,
71
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where
L]
2
o7 = f 7y dz.
0

Hence

) 2r
< gdl - 17) (5 . ‘2L+’——1) (6'2 - ﬂl)r é ﬁ?r — M.

day 2r

Let e approach zero and we have, as desired:

1 — Ps < G, / (5 . 2_’"_.'1'__1>2’,
2r

1(4 th 1 —n/2 —1
fl, -+ ,t,) = A exp ~3 =+ T+ J,', A=2r) " (o1 on)

o1 On

ExampLE 2. Let

This is a form into which the general correlation solid may be put by means of a
linear transformation. Since P; is a ratio between two parts of such a solid and
since this ratio is preserved under a linear transformation, the more general case
may be transformed into this one, or even, as will appear shortly, into the simpler
one where all the standard deviations are unity. If f = M the contour is the
ellipsoid,

f tn A
—2+“‘+—2= _210g—1.
a1 On «

The volume of this ellipsoid is
27rn/2

_oar ) n/2 = Vg, o« 70 = s
7 = B(=21ogMA)", = Voo oo ou, Vo = s

-
—1(z/h)2/n ~
Hence y = Ae @™ B = f 27y dx
0

Il

| p<ntj:ﬁ>
n4hr-i-12n/2(r+l)—lr nr+mn - W”lz?fnlgﬂal Y 2
’ 2 n (T(n/2)]+
Putting r = 2 we obtain

A2 ﬂ_n2n+2(0_1 e O'n)z Ij(3n/2)
7= n? [F(n/2)}’

and then

r <2rn -+ n)
LB\ 2 [ r(n/2) }

T T rn/2) Lr@3n/2)
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Our inequality becomes: 1 — Ps = J, where

573

Qzr - | . .
J = <—-—-——A 2r + 1)2,, or 1, whichever is smaller.
5 - b
2r
Typical numerical values of &, and of J are given in Tables I and II.
TABLE I
Values of as,
n &z az as as
1 1-3---(2r — 1) 1 3 15
2 2r)1/2r 1 6 90
3 3-5-7---(6r + 1)/(3-5-7)r 1 12.26 566
4 (4r + DY/ (BY" 1 25.20 3604
TABLE 1I
Values of J
) n ‘ r J
1 1 ‘ 1 0.444
! ] 1.000
1 ! 2 | 1 0.444
! ! 2 1.000
2 ; 1 1 0.111
| 2 0.077
i 3 0.093
3 1 1 0.049
i 2 0.015
i 3 0.008
| 4 0.006
| 5 0.006
3 2 1 0.049
! 2 0.030
3 0.049
3 3 1 0.049
2 0.062
3 0.308
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Let us now compare J with the true value of (1 — P;) in one of these cases,
viz., when § = 3 and n = 3. The true value is given by

3¢
1—-=P;=1-— Af e M g
o

where now & = 4r \/105(010205)/3, b = 4n(010205)/3. The integral may be
evaluated by means of the transformation, ¢ = (z/h)'"° and a table of the integral
of (2r) % "(t* — 1). We obtain: 1 — P; = 0.0205. This is the true value
to be compared with the approximation, J = 0.049. The closeness of this
approximation is similar to that which may be obtained for the normal law by
using the corresponding inequalities for one dimension. To illustrate this we
find from the usual tables that, if for the normal law 1 — P; = 0.0205, 8 = 2.32.
Hence the corresponding inequality is (forr = 2): 1 — P; = 0.042.

We shall now show that the upper bound of our inequality is actually attained
in a special case. Letf(ti, -+ ,¢.) = 2 "intheregion (—1 <, -+ , ¢, S 1),
and let f = 0 elsewhere. For this case we shall have x = 0 when A = 27", and
z=2"when0 =< A < 2" Thereforey = 27"if 0 S 2 < 2" andy = 0
if 2" < z. Hence ¢ = 2"/4/3, wo = 1, and the true value of (1 — P;) is
1— 86/4/3; and when § = 2/+/3, this true value is 1/3. The appropriate in-
equality is: 1 — P; < 4/9 &, and when 8 = 2/+/3 the right hand side of this
inequality is also equal to 1/3. These relationships are true for all values of n.
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