A MODIFIED EXTREME VALUE PROBLEM

By Benjamin EpsTEIN!
Coal Research Laboratory, Carnegie Institute of Technology

1. Introduction and summary. Consider the following problem.

Particles are distributed over unit areas in such a way that the number of
particles to be found in such areas is a random variable following the law of
Poisson, with v equal to the expected number of particles per unit area. Further-
more, the particles themselves are assumed to vary in magnitude according
to a size distribution specified (independently of the particular unit area chosen)
by a d.f. F(z) defined over some interval ¢ < z < b, with F(a) = 0 and
F(b) = 1. The problem is to find the distribution of the smallest, largest, or
more generally the nth smallest or nth largest particle in randomly chosen
unit areas.

The problem as stated is not completely specified. To specify the distribution
of smallest or largest particles in a unit area one must give a rule for dealing with
those areas which contain no particles at all. More generally, in the case of the
distribution of the nth smallest or nth largest particle, one must give a rule for
dealing with those areas which contain (n — 1) or fewer particles. There are at
least two possible alternatives. One alternative is to omit none of the areas
from consideration by setting up the following rule: if no particles are found in a
given unit area then this area will be considered as one for which the smallest size
particle is £ = b and for which the largest size particle isz = a. More generally,
if (n — 1) or fewer particles are found in a given unit area then this area will be
considered as one for which the nth smallest size particle is x = b and for which
the nth largest size particle is = a. A second alternative is to restrict attention
to those areas which contain at least one particle (in the case of the distribution
of smallest or largest values) or at least n particles (in the case of the distribution
of the nth smallest or nth largest particle). In other words, this means finding
the relevant conditional distribution.

From the point of view of the application of the theory of extreme values to
fracture problems, there are some situations where the first model and other
situations where the second model is the more appropriate in describing the
phenomenon under investigation. In this paper section 2 will be devoted to a
derivation of the distributions associated with the first alternative; in section 3
the conditional distributions will be described briefly.

2. The distributions under the first alternative. In this section we shall
be concerned with the first alternative. To find the distribution of the nth
smallest particle in unit areas, we first observe (the verification is left to the
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reader) that under the hypotheses of section 1, the number of particles having
size <z in a unit area is distributed according to the law of Poisson, with
expected number equal to vF(z). Next we note that the probability that the
nth smallest particle in a unit area exceeds z in size is equal to the probability of
finding exactly 0, or exactly 1, or exactly 2, - - - , or exactly (n — 1) particles of
size <z in that area. Therefore G.(z), the probability that the nth smallest size
particle in a unit area is < z, is given by

n—1 7
Gx) =1 — ) ¢’™® M, z < b;
1) =0 7!
=1, z2>b,

n-l —

where we have assigned to the size z = b the probability == ¢*(»'/7)! which is
just equal to the probability of finding fewer than n particles in a unit area.

If the d.f. F(z) has a derivative f(z) for all z lying in a < z < b, then G.(x)
has a derivative for any value of > b. Therefore the probability density for
the nth smallest size particle is, for any z > b, given by the function g.(z) where
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A finite probability D ¢~ 7 is assigned to x = b.
=0 ! v
If one makes the transformation y = vF(x) (for a similar transformation in
extreme value theory see [1, page 371]), then (1), and (2) become
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The distribution of the smallest size particle in a randomly chosen area is
found by letting » = 1 in equation 1.

In a similar way one can find the distribution of the nth largest particle in a
randomly chosen unit area. H,.(z), the probability that the nth largest size
particle in a unit area is <z, is given by



A MODIFIED EXTREME VALUE PROBLEM 101

H,(z) =0, =z<a;
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where we have assigned to the size z = a the probability > e—';—'.
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If, as before, F(z) is assumed to have a derivative f(z) for all z lying in

a < z < b, then the probability density for the nth largest size particle is, for

any z # a, given by the function k,(x) where
—y(1—F(z 1 - F(x)]n_l
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If one makes the transformation z = »[1 — F(z)], then (3) and (4) become
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The distribution of the largest size particle in a randomly chosen unit area is
found by letting n = 1 in equation 3.

3. Conditional distributions of the extreme values. The appropriate con-
ditional distributions for the problem under consideration can be written down
readily. The step function component which occurred in section 2 is no longer
present since we restrict our attention only to those areas which contain at least
n particles (in the general case of the distribution of nth smallest or nth largest
size particles).

G%(x), the d.f. of the nth smallest particle in a unit area chosen at random
from the class of areas containing at least » particles, is given by

Go(x) = 0, z < a;
n—1
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=1, z > b
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Similarly H5 (z), the d.f. of the nth largest particle in a unit area chosen at random
from the class of areas containing at least » particles, is given by

H(z) =0, r < a;
a1 n—1
z e-.—vll—F(z)][V(l —_ F(x))]’/y’ - Z e—vl’j/j!
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=1, z > b

4. General remarks and an application. It is interesting to note that the
assumptions of section 1 lead to distribution functions in section 2 which are
precisely the same as the asymptotic distributions of smallest, largest, or nth
smallest, or nth largest values in samples of fixed size N(N — «) (see e.g.
[1, p. 371]). In the problem treated in this paper, », the expected number of
particles in a unit area, plays the role of N in the fixed sample size case, with the
important difference that the distributions in the present paper are exact and
not merely asymptotic.

The results of this paper have a direct bearing on certain aspects of fracture
problems [2] and in particular on the dielectric breakdown of capacitors [3].
In the latter problem there appears to be ample justification for assuming that
the breakdown voltage is influenced to a considerable degree by the presence of
flaws known in the technical literature as conducting particles. These particles
are spread individually and collectively at random throughout the area of the
capacitor and, depending on their size, create a local weakening of the capacitor
by reducing the nominal insulation thickness in the neighborhood of flaws.
The voltage required to break down the capacitor is equal to that required to
break it down at that spot where the greatest penetration has taken place.

In the dielectric problem the statistical distribution of largest values ap-
propriate to the problem is given by (3) with » =1, and the size distribution of
conducting particles follows a law of the form f(z) = A, z > 0. This is a
situation where all the capacitors under test are part of the sample (since all
must be tested to destruction) and those which happen to contain no defects (an
event with probability ¢™”) act as if the largest particle size is equal to a = 0.
¢’ simply represents the expected fraction of capacitors which have strength
equal to the theoretical strength of the insulation.

The conditional distributions of section 3 would be more appropriate in the
following sort of practical situation. Suppose that surface flaws spread at
random on glass rods are known to reduce greatly the strength of the rods.
Suppose that in a given sample of glass rods one takes out by some method of
inspection those specimens which have no flaws. Then the streugth distribution
of the remaining specimens is a conditional distribution since each specimen must
contain at least one flaw to be eligible as a member of the sample.
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