APPLICATION OF THE RADON-NIKODYM THEOREM TO THE
THEORY OF SUFFICIENT STATISTICS!

By Paur R. Haimos? aAnp L. J. SavaGge
University of Chicago

Summary. The body of this paper is written in terms of very general and
abstract ideas which have been popular in pure mathematical work on the theory
of probability for the last two or three decades. It seems to us that these ideas,
o fruitful in pure mathematics, have something to contribute to mathematical
statistics also, and this paper is an attempt to illustrate the sort of contribution
we have in mind. The purpose of generality here is not to solve immediate
practical problems, but rather to capture the logical essence of an important
concept (sufficient statistic), and in particular to disentangle that concept from
such ideas as Euclidean space, dimensionality, partial differentiation, and the
distinction between continuous and discrete distributions, which seem to us
extraneous.

In accordance with these principles the center of the stage is occupied by a
completely abstract sample space—that is a set X of objects z, to be thought
of as possible outcomes of an experimental program, distributed according to an
unknown one of a certain set of probability measures. Perhaps the most familiar
concrete example in statistics is the one in which X is n dimensional Cartesian
space, the points of which represent n independent observations of a normally
distributed random variable with unknown parameters, and in which the
probability measures considered are those induced by the various common
normal distributions of the individual observations.

A statistic is defined, as usual, to be a function 7 of the outcome, whose
values, however, are not necessarily real numbers but may themselves be abstract
entities. Thus, in the concrete example, the entire set of n observations, or,
less trivially, the sequence of all sample moments about the origin are statistics
with values in an n dimensional and in an infinite dimensional space respectively.
Another illuminating and very general example of a statistic may be obtained as
follows. Suppose that the outcomes of two not necessarily statistically inde-
pendent programs are thought of as one united outcome—then the outcome T'
of the first program alone is a statistic relative to the united program. A
technical measure theoretic result, known as the Radon-Nikodym theorem, is
important in the study of statistics such as 7. It is, for example, essential
to the very definition of the basic concept of conditional probability of a subset
E of X given a value y of 7.

The statistic T is called sufficient for the given set I of probability measures

1 This paper was the basis of a lecture delivered upon invitation of the Institute at the
meeting in Chicago on December 30, 1947.
2 Fellow of the John Simon Guggenheim Memorial Foundation.
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226 PAUL R. HALMOS AND L. J. SAVAGE

if (somewhat loosely speaking) the conditional probability of a subset E of X
given a value y of T is the same for every probability measure in M. It is, for
instance, well known that the sample mean and variance together form a sufficient
statistic for the measures described in the concrete example.

The theory of sufficiency is in an especially satisfactory state for the case
in which the set It of probability measures satisfies a certain condition described
by the technical term dominated. A set 9t of probability measures is called
dominated if each measure in the set may be expressed as the indefinite integral
of a density function with respect to a fixed measure which is not itself necessarily
in the set. It is easy to verify that both classical extremes, commonly referred
to as the discrete and continuous cases, are dominated.

One possible formulation of the principal result concerning sufficiency for
dominated sets is a direct generalization to the abstract case of the well known
Fisher-Neyman result: 7 is sufficient if and only if the densities can be written as
products of two factors, the first of which depends on the outcome through T
only and the second of which is independent of the unknown measure. Another
way of phrasing this result is to say that T is sufficient if and only if the likelihood
ratio of every pair of measures in 9 depends on the outcome through T only.
The latter formulation makes sense even in the not necessarily dominated case
but unfortunately it is not true in that case. The situation can be patched up
somewhat by introducing a weaker notion called pairwise sufficiency.

In ordinary statistical parlance one often speaks of a statistic sufficient
for some of several parameters. The abstract results mentioned above can
undoubtedly be extended to treat this concept.

1. Basic definitions and notations. A measurable space (X, S) is a set X
and a o-algebra S of subsets of X.* If (X, S) and (¥, T) are measurable
spaces and if T is a transformation from X into ¥ (or, in other words, if T
is a function with domain X and range in Y), then T is measurable if, for every F
in T, T'(F)eS. If Y is a Borel set in a finite dimensional Euclidean space,
then we shall always understand that T is the class of all Borel subsets of Y,
and the measurability of a function f from X to Y will be expressed by the
notation f(e) S.

Throughout most of what follows it will be assumed that (X, S) and (Y, T)
are fixed measurable spaces and that 7 is a measurable transformation (also
called a statistic) from X onto Y. A helpful example to keep in mind is the
Cartesian plane in the role of X, its horizontal coordinate axis in the role of Y,
and perpendicular projection from X onto Y in the role of T'.

The following notations will be used. If ¢ is a point function on Y (with
arbitrary range), then ¢T is the point function on X defined by ¢T'(z) = g(T'(z)).
If 4 is a set function (with arbitrary range) on S, then pT " is the set function

3 A o-algebra is a non empty class S of sets, closed under the formation of complements
and countable unions. If (X, S) is a measurable space, the sets of S will be called the
measurable sets of X.
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on T defined by pT7'(F) = uw(T~'(F)). The class of all sets of the form T7'(F),
with F ¢ T, will be denoted by T *(T); the characteristic function of a set A
(in any space) will be denoted by x4 .

LemMa 1. If g is any function on Y and A is any set in the range of g, then

{z:9T(2) e A} = T '({y: g(y) e A});

hence, in particular, xr-1(ry = x#T for every subset F of ¥.*

Proor. The following statements are mutually equivalent: (a) x,
{x: gT(x) e A}, (b) g(T(x0)) €A, (c) if yo = T(m), then g(y)e4, and (d)
T(xo) € {y: g(y) e A}. The equivalence of the first and last ones of these
statements is exactly the assertion of the lemma.

We shall have frequent occasion to deal with functions on X which are induced
by measurable functions on Y'; the following result is a useful and direct structural
characterization of such functions.

Lemma 2. If f vs a real valued function on X, then a necessary and sufficient
condition that there exist a measurable function g on Y such that f = ¢T is that
f (&) T™X(T); if such a function g exists, then it is unique.’

Proor. The necessity of the condition is clear. To prove sufficiency,
suppose that f () T(T), o e Y, and write Xo = T '({s}). Suppose 2o ¢ X,
and write E = {z:f(z) = f(x,)}. Since f (¢) T (T), there is a set F in T such
that E = T '(F). Since z, ¢ E, it follows that % e F and therefore that

Xo=T"'({n}) CT'(F) = E.

In other words f is a constant on X, and consequently the equation g(yo) = f(xo)
unambiguously defines a function g on Y. The facts that f = ¢gT and that g is
measurable are clear; the uniqueness of g follows from the fact that 7' maps

X onto Y.

2. Measures and their derivatives. A measure is a real valued, non negative,
finite (and therefore bounded), countably additive function on the measurable
sets of a measurable space.® An integral whose domain of integration is not
indicated is always to be extended over the whole space. If the symbol
[u], pronounced “modulo u”, follows an assertion concerning the points z of
X, it is to be understood that the set E of those points for which the asser-
tion is not true is such that £ ¢ S and u(E) = 0. Thus, for instance, if f
and g are functions (with arbitrary range) on X, then f = ¢ [u] means that

4 The symbol {— : —} stands for the set of all those objects named before the colon
which satisfy the condition stated after it.

5 The notation f (¢) 7-1(T') means of course that f is a measurable function not only on the
measurable space (X, S) but also on the measurable space (X, T-1(T')). The restriction to
real valued functions is inessential and is made only in order to avoid the introduction
of more notation.

6 Although most of the measures occurring in the applications of our theory are probability
measures (i.e. measures whose value for the whole space is 1), the consideration of probabil-
ity measures only is, in many of the proofs in the sequel, both unnecessary and insufficient.
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p({z: f(x) # g(x)}) = 0. Similarly, if f is a real valued function on X, then
f (6 T™X(T) [u] means that there exists a real valued function g on X such
that g (¢) T"X(T) and f = ¢ [u].

If p and v are two measures on S, v is absolutely continuous with respect to p,
in symbols v < p, if »(E) = 0 for every measurable set E for which u(E) = 0.
The measures p and » are egquivalent, in symbols p = v, if simultaneously p < »
and » < u.” One of the most useful results concerning absolute continuity is the
Radon-Nikodym theorem, which may be stated as follows.?

A necessary and sufficient condition that v << u is that there exist a non negative
function f on X such that

v®) = [ f@) dute)
E
for every E in S. The function f is unique in the sense that if also
v®) = [ 90) dute)
E

for every E in S, then f = g [ul. If v(E) £ u(E) for every E in S, then 0 £ f(x)
< 1[u

It is customary and suggestive to write f = dv/du. Since dv/du is determined
only to within a set for which u vanishes, it follows that in a relation of the form

gl (&) T7XT) [u]
m

the symbol [u] is superfluous and may be omitted.

For typographical and heuristic reasons it is convenient sometimes to write the
relation f = dv/dp in the form dv = fdu; all the properties of Radon-Nikodym
derivatives which are suggested by the well known differential formalism cor-
respond to true theorems. Some of the ones that we shall make use of are
trivial (e.g. dvy = fidu and dv, = fodp imply d(vi + ) = (fi + fo)du), while
others are well known facts in integration theory (e.g. (i) d\ = fdv and dv = gdu
imply d\ = fgdu, and (i) dv = fdu and du = gdv imply fg = 1 [u]).

We conclude this section with a simple but useful result concerning the
transformations of integrals.

Lemma 3. If g ¢s a real valued function on Y and u is a measure on S, then

[owara) = |

-l(,

| 9T(@) du(x)

for every F in T, in the sense that if either integral exists, then so does the other and
the two are equal.

71t is clear that the relation of equivalence is reflexive, symmetric, and transitive,
and hence deserves its name.

8 For a proof of the Radon-Nikodym theorem and similar facts concerning the measure
and integration theory which we employ, see S. Saks, Theory of the Integral, Warszawa—
Lwéw, 1937.
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Proor. Replacing g by gxr we see that it is sufficient to consider the case
F = Y. - The proof for this case follows from the observation that every ap-
proximating sum

Z; gy)uT ' (F3)
of f gduT " is also an approximating sum

2; 9T (x:)u(ES)
of f gTdu, and conversely.’

3. Conditional probabilities and expectations. Lemma 4. If p and v are
measures on S such that v < p, then yT~* K uT™.
ProoF. If F eTand 0 = puT'(F) = u(T ' (F)), then

0 = »(TF)) = »T(F).2

Lemma 4 is the basis of the definition of a concept of great importance in
probability theory. If u is a measure on S and f is a non negative integrable
function on X, then the measure » defined by dv = fdu is absolutely continuous
with respect to u. It follows from Lemma 4 that »T™ ! is absolutely continuous
with respect to T '; we write dvT™' = gduT". The function value g(y) is
known as the conditional expectation of f given y (or given that T(z) = y); we
shall denote it by e,(f | ¥). If f = xz is the characteristic function of a set E in
S, then e,(f | y) is known as the conditional probability of E given y; we shall
denote it by p.(E | y)."

The abstract nature of these definitions makes an intuitive justification of
them desirable. Observe that since »T(F) = »(T(F)) = fr -, @) duta),

the defining equation of e,(f | y), written out in full detail, takes the form

[, (@@ = [ aGlpwre), Fer.

9 Tt is of interest to observe that either side of the equation in Lemma 3 may be obtained
from the other by the formal substitution y = T'(z). A special case of this lemma is the
celebrated and often misunderstood assertion that the expectation of a random variable is
equal to the first moment of its distribution function.

10 That the converse of Lemma 4 is not true is shown by the following example. Let X be
the unit square, let ¥ be the unit interval, and let T’ be the perpendicular projection from
X onto Y. Let u be ordinary (Borel-Lebesgue) measure and let » be linear measure on the
intersection of X with, say, the horizontal line whose ordinate is . Clearly » is not abso-
lutely continuous with respect to g, but »7T-1 = pT-1.

1 Definitions in this form were first proposed by A. Kolmogoroff, Grundbegriffe der
Wahrscheinlichkeitsrechnung, Berlin, 1933. With a slight amount of additional trouble,
conditional expectation could be defined for more general functions, but only the non
negative case will occur in our applications.
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If f = x&, then this equation becomes the defining equation of p,(E | y):
WE 0T ) = [ pElyar), Fer’

The customary definition of “the conditional probability of E given that T'(z) e F”’
is w(E n T/ (F))/u(T(F)), (assuming that the denominator does not vanish).
Since u(T'(F)) = uT '(F), we have

pEnT(F) 1 -
M(T_I(F)) = MT—I(F) /;pﬂ(Ely) auT (ZI)-

It is now formally plausible that if “F shrinks to a point y,” then the left side
of the last written equation should tend to the conditional probability of E
given y and the right side should tend to the integrand p.(E | ). The use of
the Radon-Nikodym differentiation theorem is a rigorous substitute for this
rather shaky difference quotient approach.

Since pu(E | y) is determined, for each E, only to within a set for which uT*
vanishes, it would be too optimistic to expect that, for each y, it behaves, regarded
as a function of E, like a measure. It is, however, easy to prove that
@) X |y) = 1 [T,

@ 0=pEly) 1[I,
(iii) if {E,} is a disjoint sequence of measurable sets, then p,(Una E, | y) =
205 pulBa | y) [T )"

The exceptional sets of measure zero depend in general on E in (ii) and on the
particular sequence {E,} in (iii). It is interesting to observe that, despite the
fact that u need not be a probability measure, p, turns out always to have the
normalization property (i). It isnatural to ask whether or not the indeterminacy
of p,(E | y) may be resolved, for each E, in such a way that the resulting function
is a measure for each y, except possibly for a fixed set of y’s on which pT*
vanishes. Doob has shown that this is the case when X is the real line; in the
general case such a resolution is impossible. Fortunately, however, conditional
probabilities are sufficiently tractable for most practical and theoretical purposes,
and the requirement that they should behave like probability measures in the
strict sense described above is almost never needed.

12 We observe that it is not sufficient to require this for ¥ = Y only, i.e. to require
w(E) = Spu(E|y) duT ' (y). This special equation is satisfied by many functions which
do not deserve the name conditional probability; e.g. it is satisfied by p.(E | y) =
constant = u(B)/uT-1(Y).

13 See J. L. Doob, “Stochastic processes with an integral-valued parameter,” Am. Math.
Soc. Trans., Vol. 44 (1938), pp. 95-98.

14 See Doob, loc. cit. Doob asserts the theorem in much greater generality, but his
proof is incorrect. The error in the proof and a counterexample to the general theorem
were communicated to us by J. Dieudonné in a letter dated September 4, 1947. Doob’s
proof is valid for more general spaces than the real line (e.g. for finite dimensional Euclidean
spaces and for compact metric spaces). The details of Dieudonné’s counterexample will
appear in a forthcoming book (entitled Measure theory) by Halmos.
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We conclude this section with two easy but useful results which might also
serve as illustrations of the method of finding conditional probabilities and
expectations in certain special cases.

Lemma 5. If pis a measure on S, if g s a non negative function on Y, integrable -
with respect to uT~", and if v is the measure on S defined by dv = gTdp, then
dvT™" = gduT™", or, equivalently, e,(9T | y) = g(y) T ).

Proor. From »(E) = / gT(x) du(z) and Lemma 3 it follows that
E

T E) = HT7E) = [ 9) T ).

LeMMmA 6. If uis a measure on S, if f and g are non negative functions on X and
Y respectively, and if f, gT, and f-gT are all integrable with respect to u, then

a(f-9T |y) = a(f19)-9@) LT
Hence, in particular, if F ¢ T, then
PuE T (F)|y) = pu(EB | y)xey) WT]
for every E in S.
ProoF. If dv = fdu, then, by definition of e, , yT'(F) = j; eu(f | y) duT ().
Applications of Lemmas 3 and 5 yield

f' a(f | 9)9@) duT ' (y) = f’ 9y) T (y) = _[T . 97T (z) dv(z)

= [, J@0T@ du@) = [ esoT |9 duT )

and therefore the desired conclusion follows from the uniqueness assertion of the
Radon-Nikodym theorem.

4. Dominated sets of measures. In many statistical situations it is necessary
to consider simultaneously several measures on the same o-algebra. The
concept of absolute continuity is easily extended to sets of measures. If I
and N are two sets of measures on S and if, for every set E in S, the vanishing of
w(E) for every p in IR implies the vanishing of »(E) for every » in R, then we
shall call M absolutely continuous with respect to I and write M < M. If
N KM and P! KN, the sets P and N are called equivalent and we write M = N.
If, in particular, IR contains exactly one measure u, M = {u}, the abbreviated
notations N K p, p KN, and p = N, will be employed for N K M, M KN, and
M = N, respectively.

A set I of measures on S will be called dominated if there exists a measure X
on S (not necessarily in %) such that M << A.  In applications there frequently
occur sets of measures which are dominated in a sense apparently weaker than
the one just defined—weaker in that the measure A, which may for instance be
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Lebesgue measure on the Borel sets of a finite dimensional Euclidean space,
is not necessarily finite. It is easy to see, however, that whenever A has the
property (possessed by Lebesgue measure) that the space X is the union of
countably many sets of finite measure, then a finite measure equivalent to A
exists and the two possible definitions of domination coincide.

The following result on dominated sets of measures may be found to have
some interest of its own and will be applied in the sequel.

LemMmA 7.  Every dominated set of measures has an equivalent countable subset.

Proor. Let I be a dominated set of measures on S, P <K A; for any u in N
write f, = dp/d\ and K, = {z:f.(z) > 0}. We define (for the purposes of this
proof only) a kernel as a set K in S such that, for some measure pin M, K C K,
and p(K) > 0; we define a chain as a disjoint union of kernels. Since A(K) > 0
for every kernel K, it follows from the finiteness of A that every chain is a countable
disjoint union of kernels. It follows also from these definitions that if C is a
measurable subset of a chain, such that u(C) > 0 for at least one measure pin I,
then C is a chain, and that a disjoint union of chains is a chain. The last two
remarks imply, through the usual process of disjointing any countable union,
that a countable (but not necessarily disjoint) union of chains is a chain.

Let {C;} be a sequence of chains such that, as j — o, X(C,) approaches
the supremum of the values of A on chains. If ¢ = Uj; C;, then C is a chain
for which A(C) is maximal. The definition of a chain yields the existence of a
sequence {K;} of kernels such that ¢ = UZ; K;, and the definition of a kernel
yields the existence, for each 7 = 1, 2, ---, of a measure u; in M such that
K; C K,; and ui(K;) > 0. We write ® = {u1, pa, ---}; since W C M, the
relation N < M is trivial. We shall prove that P <K N.

Suppose that E ¢S, p;(E) = Ofor< = 1,2, --- , and let x be any measure in
M. It is to be proved that u(E) = 0. Since u(E — K,) = 0, there is no loss of
generality in assuming that E C K,. If u(E — C) > 0,then A\(E — C) > 0
and therefore (since E — C is a kernel) E u C is a chain with N(E u C) > A(C).
Since this is impossible, it follows that u(E'— C) = 0. Since 0 = w;(E) =

wEnK;) = f fu; d\ and since K; C K, , it follows that A(E n K;) = 0.
EnKg

We conclude that A\(E n C) = D=1 A(E n K;) = 0 and therefore u(E n C) = 0.

Since u(E) = u(F — C) 4+ u(E n C), the proof of the lemma is complete.

6. Sufficient statistics for dominated sets. The statistic T is sufficient for a
set M of measures on S if, for every E in S, there exists a measurable function
p = p(E | y) on Y, such that

Pu(E | y) = p(E | y) [uT7]

for every uin M.”® In other words, T is sufficient for I if there exists a condi-

15 The original definition of sufficiency was given by R. A. Fisher, “On the mathematical
foundations of theoretical statistics,’””> Roy. Soc. Phil. Trans., Series A, Vol. 222 (1922),
pp. 309-368.



SUFFICIENT STATISTICS 233

tional probability function common to every u in 9, or, crudely speaking, if the
conditional distribution induced by 7 is independent of w.

TuroreM 1. A necessary and sufficient condition that the statistic T be sufficient
Jor a dominated set I of measures on S is that there exist a measure X on S such that
M = \ and such that du/d\ (¢) T (T) for every p in M.

Proof of necessity. Let N = {m, pa, - -} be a countable subset equivalent
to M (Lemma 7), and write A for the measure on S defined by

ME) = 2 i aa(B),

where a; = 1/2°(X), 7 =1,2, --- . Clearly ¢ = A.
If p is a conditional probability function common to every u in IR, then, for
every Fin T,

ME n TYF)) = D 5 aipsi(E n TH(F))

= St [ pE | W) = [ @9 DTW),

i.e. p serves also as a conditional probability for A.
Take any fixed u in I, write du/d\ = f, and ex(f | ¥) = g(y); then duT™" =
gd\T*, and we have, for every E in S,

[ 1@ @@ = w@ = [ pE |9 &)
= [ 2@ 190w) ATG) = [ ats | T |1 AT

= [ateoT 19 AT70) = [ xs@T@ a6 = [ o7 @)

The desired result, f(z) = g7T(z) [A], follows from a comparison of the first and
last terms in the last written chain of equations.

Proof of Sufficiency. We shall prove that p, is a conditional probability
function common to every u in IR. Take any fixed £ in S and x in I and
write du/d\ = gT. If the measure » is defined by dv = xgdu, then dvT™* =
pduT ™", where p. = p.(E|y). The hypothesis du gTd\ implies that
duT™" = gd\T™" and hence that

dvT™" = p,-gd\T™".

On the other hand dv = xgdp = xz:gTdM, so that
dvT ™" = exd\T™,

where ex = ex(xz-9T |y) = o\(E | »)g(y). It follows from a comparison of
the two expressions for dvT ™" that

2B | )al) = p(E | y)gly) WT].
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Since the relation duT™" = gd\T " clearly implies that g(y) > 0 [T (ie.
that uT'({y: g(y) = 0}) = 0), it follows, finally that

2B |y) = pn(E |y) I

6. Special criteria for sufficiency. Theorem 1 may be recast in a form more
akin in spirit to previous investigations of the concept of sufficiency.

CoroLLARY 1. A necessary and sufficient condition that the statistic T be
sufficient for a dominated set M (<K No) of measures on S is that, for every p in M,
fu = du/d) be factorable in the form f, = g,-t, where 0 < g, () T N(T), 0 < t, ¢
and g,-t are integrable with respect to N, and t vanishes [\o] on each set in S for
which every u in P vanishes.

In more customary statistical language the condition asserts essentially that
“each density is factorable into a function of the statistic alone and a function
independent of the parameter.”

Proor. If T is sufficient for 9, then there exists a measure A with the
properties described in Theorem 1. It follows that

Ju= e = ar dno
and we may write g, = du/d\ and ¢ = d\/d\y. The only assertion that is not.

immediately obvious is the one concerning the vanishing of t. To prove it,
suppose that u(E) = 0 for every p in I; the fact that then

0 = ME) = fE 1) dho(x)

implies the desired conclusion.

If, conversely, fu = g.-t, then we may write d\ = td\,. The relation I = A
follows from the statement concerning the vanishing of {, and the relation
du/d\ () T™Y(T) is implied by the equation du = g,-tdAy = g,dM.

For the statement of the next consequence of Theorem 1 it is convenient to
call a set I of measures on S homogeneous if 4 = v for every u and v in IN.

COROLLARY 2. A mnecessary and sufficient condition that the statistic T be
sufficient for a homogeneous set M of measures on S s that, for every p and v in M,
dv/dp (e) T N(T).

Proor. Since a homogeneous set is-dominated (by any one of its elements),
Theorem 1 is applicable. If T is sufficient for M and if A has the properties
described in Theorem 1, then dv/du = (dv/d\)/(du/d)\). The converse follows,
through Theorem 1, by letting A be any measure in .

We shall say that the statistic T’ is patrwise sufficient for a set I of measures

16 See J. Neyman, “Su un teorema concernente le cosiddette statistiche sufficienti,” Inst.
Ital. Atti. Giorn., Vol. 6 (1935), pp. 320-334. In this paper Neyman is somewhat restricted
by his use of classical analytical methods, but he points out the possibility and desirability
of extending his results to a much more general domain. For a recent presentation of the
theory and further references to the literature cf. H. Cramér, Mathematical Methods of
Statistics, Princeton, 1946.
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on S if it is sufficient for every pair {u, »} of measures in M. In other words,
T is pairwise sufficient for I if, for every E in S and p and » in I, there exists a
measurable function p,.(E | y¥) on Y such that

2y = pwE|y) KTl  and  p(E|y) = pu(E|y) BT

Since pairwise sufficiency is (at least apparently) weaker than sufficiency, it is
not surprising that there is a simple criterion for it even in the case of quite
arbitrary (not necessarily homogeneous or dominated) sets of measures.

COROLLARY 3. A necessary and suffictent condition that T be pairwise sufficient
for a set M of measures on S is that, for any two measures u and v in I, du/d(x + »)
(&) TND).

Proor. If T is sufficient for u and », then there exists a measure A = u + »
such that du/d\ () T™(T) and dv/d\ (¢) T (T). It follows that

b fdak) (0 B)
dlu+v) dx dx d\ d d\)’

The sufficiency of the condition follows immediately by applying Theorem 1

to the two-element set {u, »}.

7. Pairwise sufficiency and likelihood ratios. It is sometimes convenient to
express the result of Corollary 3 in slightly different language. If A is a measure
on S and if f and g are real valued measurable functions on X such that
AM{z: fix) = g(x) = 0}) = 0, we shall say that the pair (f, g) is admissible [A].
(Intuitively an admissible pair (f, ¢) is to be thought of as a ratio f/g, which,
however, may not be formed directly at the points x for which g(z) = 0.) Two
admissible pairs (fi, ¢1) and (f2, g.) will be called equivalent [\], in symbols
(1, ¢1) = (f2, g2) ], if there exists a real valued measurable function ¢ on X
such that ¢(z) # 0 [A\] and such that fi = #f2 and g1 = tg. [\]. It is clear that the
relation “ = [A]” is indeed an equivalence; the equivalence class containing the
admissible pair (f, g) will be called the ratio of f and ¢ and will be denoted by
flg- (A ratio may accordingly be described as a measurable function from X
to the real projective line.) For a ratio f|g we shall write f| g (¢) T-X(T) [A]
if the equivalence class f | g contains a pair (fo, go) which is admissible [A] and
for which fo (¢) T"X(T) and g, (¢) T (T).

LemMMa 8. If p, v, A1, and Ay are measures on S such that p + v <K A\ and
p+ v K 2, then the pairs (du/d\:1, dv/d\) and (du/dNs , dv/d\;) are admissible
[u + »] and equivalent [u + ).

Proor. The admissibility of, for instance, (du/d\: , dv/d\;) follows from the
fact that du/d\; # O [u] and dv/d\; # O [v], whence

(o + v)({x: (;d—)': (x) = di;’l (x) = O}) = 0.

To prove equivalence, we write A; 4+ A; = A. Since
du d\i _ dp  dp dhs dv dv_ dv _ dv dhs

d\idN dN dA AN d\idh dN dh dN’
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since also d\i/d\ 5 0 [\(] and therefore d\i/d\ 5= O [u + ], and since, similarly,
ds/dN # 0 [u + v], the conditions of the definition of equivalence are satisfied
by t = (dN\o/dN)/(d\/dN).

If 4 and v are any two measures on S and if A is any measure on S such that
p + v K X\ (for instance if X = u + »), then the ratio du/d\ | dv/d)\, which
according to Lemma 8 exists [u + »] and is independent of X\, will be called the
likelihood ratio of p and v and will be denoted by du | dv. The result of Corollary
3 may be expressed in terms of likelihood ratios as follows.

THEOREM 2. A necessary and suffictent condition that T be pairwise sufficient
for a set MM of measures on S is that, for any two measures u and v in M,
du | dv (¢) TNT).

Proor. If T is sufficient for u and », then, by Corollary 3, du/d(u + ») (¢)
T7(T), dv/d(p + v) () T"'(T), and, by Lemma 8, (du/d(s + »), dv/d(u + »)) is
an admissible pair belonging to the equivalence class du | dv. Suppose conversely
that f = dp/d(p + »), ¢ = dv/d(p + v), and let the real valued measurable
functions ¢, fy , and go be such that t # 0 [u + 4], fo (&) TNT), g0 (¢) T"1(T),
(fo , go) is admissible {u + »], and

f=tf, g=tglkt+r

Since f and g are non negative, it follows that f = |[¢]|-|fo] and g = [ ¢ ]| g0 ]
[ + »), i.e. that there is no loss of generality in assuming that ¢, f, , and g, are
non negative. The relation f + g = 1 [u 4+ »] implies that - (fu + g) = 1
[u + »]; the fact that (fo, go) is admissible [u + »] then yields ¢ e T (T). The
proof is completed by comparing this result with the expressions for f and g in
terms of fo and g and applying Corollary 3.

8. Pairwise sufficiency versus sufficiency. In order to show that our results
on pairwise sufficiency (in the preceding section and in the sequel) are not
vacuous, we proceed now to exhibit a statistic which is, for a suitable set of
measures, pairwise sufficient but not sufficient. -

Let X = {(2,7):0 22 = 1,7 = 0, 1} be the union of two unit intervals and
let Y = {y: 0 = y < 1} be a unit interval. In accordance with our basic
convention, measurability in both X and Y is to be taken in the sense of Borel.
The statistic T is defined by T'(z, 7) = .

Write Xy = {(z,0):0 Sz =< 1}l and X; = {(z,1):0 = 2 = 1}. Let pbe
(linear) Lebesgue measure on the class S of Borel subsets of X, and define,
whenever E e Sand 0 £ a £ 1,

ua(E) = 3u(E n Xo) + xzx,(@, D]

Let » be (linear) Lebesgue measure on the class T of Borel subsets of Y, and
define, whenever FF e Tand 0 £ a £ 1,

va(F) = 3[v(F) + xr(a)].

Clearly vo = poT'; we write M = {pa:0 £ a £ 1}.
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If 8(y, «) is defined to be 1 or 0 according as y = aor y ¥ a, if §'(y, @) =
1 — §(y, @), and if

pa(E |y) = 8'(y, 2)xs(y, 0) + 8(y, a)x=(y, 1),
then a straightforward computation shows that

kBT ) = [ pu(E 1) dvalw)

so that pa(E | y) = pu(E | y) [val.
It is now easy to verify that T is pairwise sufficient for . Indeed if « and 3
are any two different numbers in the closed unit interval, we may write

p(E |y) = 5, a)d' @y, B)xz(y, 0) + [6(y, @) + 8y, B)lx=(, 1).

Since {y: p(E |y) = pa(E |y)} = {8} and {y: p(E |y) = ps(E | y)} = {a}, it
follows that p(E | y) = pa(E | y) [vo] and p(E | y) = ps(E | y) [vs].

To prove that T is not sufficient for I8 we observe that p.(Xi|y) =
8(y, @)xx,(y, 1) = 3(y, «) and therefore

(X1 ] 9) = 8(y, @) [vd].

Suppose that there is a conditional probability function p such that p(E |y) =
Pu(E | ¥) [ve]. Then, in particular,

pX1l|y) = 8@y, @) [va].
Since va({a}) = 3 > 0, it follows that
(X1 Ia) = de, @) = 1,

or, changing to a more suggestive notation, that p(X;|y) = 1for all y. We
have, however,

voa({y: pa(X1|y) = 0})

va({y: 8(y, a) = 0})
= valy:y # a}) =3,

so that va({y: (X1 | ¥) = 0}) = 3. This contradiction shows the impossibility
of the existence of a conditional probability function common to every u in IR.

This example shows also that, in a sense, sufficiency is more fundamental
than pairwise sufficiency. If, for instance, we imagine that it is important to a
statistician that he either estimate a sharply or refrain from estimating it
altogether, then he is by no means as well off with the observation of y as with
that of z.

9. Pairwise sufficiency for dominated sets. We now proceed to show that
for dominated sets of measures no such example as the one in the preceding
section exists, or, in other words, that for dominated sets the concepts of pairwise
sufficiency and sufficiency do coincide.
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Lemma 9. If T is pairwise sufficient for a set {uo, w1, ue} of three measures
on S, then?

duo
duo + m + M)

Proor. According to Corollary 3,

() T(T).

it (OTNT) and f, = it )(e)r‘(T).

h= duo + m) d(uo + p2
Since duo = fid(uo + m) = fod(wo + ), we have fiduo = fifed(wo + p2) and
Sfedpo = fifed(uo + 1), so that

(i + fo — fif)duo = fifed(uo + 1 + ).
If we write duo = fd(uo + u1 + we), then it follows that
(v + fo = fif)f = fifa lo + 11 + mal.
Since 0 = f; £ 1and 0 £ f; £ 1, the equation fi + fo — fife = 0 is equivalent

tofi = fo = 0. Since w({z: fi(x) = fo(x) = 0}) = 0, it follows that f may be
redefined, if necessary, to be 0 on the set {z: fi(z) = fo(x) = 0} without affecting
the relation duo = fd(uo + m + w2); since outside this set f = fife/ (fi + fo — fife),
the proof of the lemma is complete.

Lemma 10. If T is pairwise sufficient for a finite set {mo, w, -+, ms} of
measures on S, then duo/d (D %, pi) (&) T7U(T).

Proor. For & = 1 the conclusion is a restatement of the hypothesis; we
proceed by induction. Given uo, p1, « -+ , prtr, We write p= >k imi. Then
dpo/d(ue + 1) () T7X(T) by the induction hypothesis and duo/d(uo + wrs1) (e)
T X(T) by Corollary 3. Lemma 9 may then be applied to {ws, 4, w+1} and
yields the desired conclusion.

LemMa 11. If {uo, pa,pe---} @s a sequence of measures on S such that
Do ni(X) < w;if, for every Ein S, u(E) = D 50 ui(E); and if \ is a measure
S such that u; K XN fort =10,1,2, --- | then

lim , d(2%0 ) /dN = du/dn N].

Proor. Since 0 < d(D tom)/dh = D%, (dus/d\) < du/dh [N], the se-
ries oo (dus/d\) does indeed converge to a measurable function f [\]. Since,
for every E in S,

[1an=Zr [ %an = T w® - @)

we have f = du/d\ [\], as stated.

17 In view of Theorem 1, Lemma 9 asserts that if 7' is pairwise sufficient for a set ¢ of
three elements, then T is sufficient for M. Lemmas 10 and 12 extend this result to finite
and countably infinite sets I respectively. Since every countable set of measures is
dominated, the final result, Theorem 3, contains all these preliminaries as special cases.
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Lemma 12, If {uwo, ma, pe, * -} s @ sequence of measures on S such that
> roui(X) < o, and if, for every E in S, p(E) = D50 ui(E), then

lim dﬂo/ d(21=o lh) = d.uo/ du [lt]-

If, in addition, T is pairwise sufficient for the sequence {po, pi, uz.+-}, then

dyo/du (&) T (T).
Proor. Wehave,fork =0,1,2, ---,

duo .d(Z’Lo i) _ duo
d(ELo .Ui) du du
If we write A = u, then the hypotheses of Lemma 11 are satisfied and, con-
sequently, the second factor on the left side converges to 1 [r]; it follows that the
first factor converges to duo/du [u]. The second assertion of the lemma follows
from Lemma 10.

TueorREM 3. A mnecessary and sufficient condition that T be sufficient for a
dominated set M of measures on S s that T be pairwise sufficient for M.

Proor. The necessity of the condition is obvious. To prove its sufficiency,
let ® = {wm, w2, ---} be a countable subset of I which is equivalent to M
(Lemma 7), and let py be an arbitrary measure in 9. Since the sufficiency or
pairwise sufficiency of T remains unaltered if some or all of the measures in I
are replaced by positive constant multiples of themselves, we may assume that
S rom(X) < . If we write, for every E in S, N(E) = D pi(E), then the
pairwise sufficiency of T' and Lemma 12 imply that dus/d(u + N\) (¢) T X(T).
The relation

d_#o — duo d(llo + N _ Ao ( d\ )_1
d\  d(uo + M) 122 " d(ko + N) \d(uo + N

_ do (1 _ dpo )_l
N d(l-lo + )\) d(#o + >\)

implies that duo/d\ (¢) T~ '(T); an application of Theorem 1 concludes the proof.
A comparison of Theorems 1 and 2 and Corollary 3 yields immediately the
following consequence of Theorem 3.
CoROLLARY 4. A mecessary and sufficient condition that the statistic T be
sufficient for a dominated set M of measures on S is that, for any two measures
wand v in WM, du/du + v) () T X(T), or, equivalently, du | dv (e) T7HT).

10. The value of sufficient statistics in statistical methodology. We gather
from conversations with some able and prominent mathematical statisticians
that there is doubt and disagreement about just what a sufficient statistic is
sufficient to do, and in particular about in what sense if any it contains “all the
information in a sample.” We therefore conclude this paper with a brief
explanation of a point of view which, while not original with us, has not received
due publicity.
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Suppose a statistician & is to be shown an observation x drawn at random
from some sample space (X, S) on which an unknown measure, u, of a set I of
possible measures obtains, while for the same observation x another statistician
T is only to be shown the value T'(z) of some statistic T sufficient for M. It is
clear that S is as well off as J; we shall argue that I is also as well off as S.

Suppose & has decided how to use his datum, that, in other words, he has
decided just what he will do (or, in particular, say) in the event of each possible z.
His program can then be described schematically by saying that he has seiected
some function f (of the points z) which, without serious loss of generality, may
be supposed to take real values. Now &’s only real concern is for the probability
distribution of f given u, i.e. for the function ¢ of a real variable ¢, defined by

o(c) = p({z: fl@) <c}) = u(E()).

But J can if he wishes achieve exactly the same results as S, in the following way.
Let him, on learning the value of T'(z), select a real number f, with the aid of a
“random machine” which produces numerical values according to the known
distribution function ¥, defined by

¥() = p(E() | T(x)).
Then, for any u in I, the probability that I will select a value less than ¢ is

[ p@© |aT ) = u(EBE) = 0.

Thus J is at no disadvantage, save for the mechanical one of having to manipu-
late a random machine, and he may fairly be said to have as much information
as 8.

As a matter of fact we know of no practical situation in which J would actually
go to the trouble of using a random machine. There are some situations in
which he should in principle do so, but in which practical statisticians have not,
so far as we know, thought it worth while. If, for example, an outcome consists
of a sequence of n heads and tails resulting from = spins of a coin the heads
ratio of which is known to be either one half or one quarter, then a sufficient
statistic is the number of heads which occur in the sequence. In basing a
decision on the outeome of this program both & and, to a still greater extent,
J have (according to Wald’s theory of minimum risk) something to gain by
recourse to a random machine. There are, on the other hand, many technical
desiderata which sufficient statistics meet exactly without recourse to random
machines. Thus, as Blackwell has shown,” if § has an unbiased estimate, R,
of some parameter, J can find a function R*, defined by R*(y) = e(R|y),
which is an unbiased estimate of that parameter, with variance not greater than
that of B. More generally, if R is any estimate with finite mean square deviation
from a parameter, then it is easy to show with Blackwell’s methods that R*

18D, Blackwell, “Conditional expectation and unbiased sequential estimation,” Annals
of Math. Stat., Vol. 18 (1947), pp. 105-110.
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has no larger a mean square deviation than R. Finally it is a well known fact
that, under suitable hypotheses, if there exists a maximum likelihood estimate B
of some parameter, then R depends only on y.

We think that confusion has from time to time been thrown on the subject .
by (a) the unfortunate use of the term “sufficient estimate,” (b) the undue
emphasis on the factorability of sufficient statistics, and (c) the assumption
that a sufficient statistic contains all the information in only the technical
sense of “information’ as measured by variance.



