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Moreover, we cannot have u; = —1 because that would mean by (3) that
0 = zidiz; + 2wz = ZAz; .

Relation (12) thus implies

(14) 1= |w|*>0

i.e. | ui| < 1 as was to be proved.
The part of the theorem giving the sufficient condition was already obtained
by L. Seidel [1] and G. Temple in a somewhat more indirect fashion.
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SOME RECURRENCE FORMULAE IN THE INCOMPLETE BETA
FUNCTION RATIO

By T. A. BANCROFT
Alabama Polytechnic Institule

1. Introduction. It is well known that the incomplete beta function ratio,
defined by

- B.(p, Q)
1) L(p, q) B0’
where
2) B:p,q) = fo ’ "1 — 2)* dx,
and
(3) B(p’ ‘1) = Bl(p’ Q)’
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is of importance in probability distribution theory, and, hence, also in obtaining
exact probability values in making tests of statistical hypotheses. In constructing
certain extensions [1] of Karl Pearson’s “Tables of the Incomplete Beta-Func-
tion” [2], the recurrence formulae contained in the following sections were de-
rived.

2. Derivation of formulae. The incomplete beta function, B.(p, ¢) may be
considered as a special case of the hypergeometric series, F(a, b, ¢, x), thus

(4) B.(p, ) = % Fp,1 — g, p+ L, ).

The series converges for |z | < 1, if and only if @ + b < ¢. By setting a = p,
b=1—g¢qandc = p + 1, as in (4), all conditions are satisfied, if we also take
g > 0.

Recurrence formulae for F(a, b, ¢, ), €. g., in the work of Magnus and Ober-
hettinger [3], may now be directly converted for use with B.(p, q) or I.(p, q).
In particular, using the three identities on page 9 of [3], with z replacing z, we
have

(5) cF(a,b,c,z) + (b —c)F(a+ 1,b,¢c+ 1, 2)
- bl —a)Fla+1,b+1,c+1,2) =0,
6) c(c —ar — b)F(a,b,c,x) — clc — b)F(a,b — 1,¢, x)
+ abx(1 — x)Fla+ 1,0+ 1,c+ 1,2) =0,
(7) cF(a,b,c,x) — cF(a,b+ 1,¢,z) + azFla+ 1,0+ 1,¢c+ 1,2) = 0,
witha = p,b =1 — ¢, and ¢ = p + 1, we obtain in turn
@) zl(p,q) —LM®+1,¢9)+ 1 —2).(p +1,¢g—1) =0
9) @+ q—po)ap,q) — qlolp,q+ 1) —p(l —2).(p+1,¢ — 1) =0
(10) ql(p, ¢+ 1) + pl(p + 1,9) — (p + @)I.(p, q) = 0.

Formula (8) is the basic recurrence formula used in the construction of Karl
Pearson’s [2] tables. Formula (10) was obtained, incidentally, by the author [4]
in a different connection and manner.

Formulae (8), (9), and (10) may now be combined to give other useful formulae,

e. g.,
A1) g.p+ L+ D)+ @+gr—lip+1,¢9 — (p + Qxl.(p,q) = 0,

(12) pl.p+1,¢+ 1)+ (@ —p + ¢)lp, g+ 1)
—(@+91 —2).(p,q) =0,
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(13) (p+¢q¢— Dallp — 1,9
—@+q— 12+ pLp g + pllp+ 1,9 =0,
(14) (@ + (1 — )L(p + 1, ¢ — 1)
— {4+ —a) + ¢I.p+ 1,9 + plp + L,¢+ 1) = 0.

Notice that the sum of the coefficients is always zero.
By a repeated use of (10) it is possible to obtain the formulae

L(p + n, (I) = m TZ:;) (=1

(15)
. (7:) p+qg+n—1D""(q+r—1D"Lp g+,
1 n
I(p, ¢ + n) = TG Z (-1)
(16) (q +n 1) r=0

: (?) p+qg+n—0""0@+r—-1"Lp+rq,
where (p + ¢ + n — 1), etc., refer to the factorial notation, e. g.,

p+g+m—-D"" =@+qg+n—-Dp+qg+n—2) - (p+q+n).

3. An application. Formulae (15) and (16) may be used to write general
formulae for obtaining values of I.(p, ¢) where p or ¢ may be greater than 50,
i. e., for such values outside the range of Karl Pearson’s tables. In particular,

L(50 4+ n, q) = n+ q + 49)™1.(50, q)

e
49 + n)™

an
—(’1‘) g(n+q+49)""L50,¢ +1) -++ (=1)"(g+n — D™I50,0 + n)]
and
. 1 (n)
. I(p,50 + n = m I:(n+ p + 49)™ I.(p, 50)

—(’{)p(n+ p+49) " L(p+1,50) - (-1)"(p+n— D" Lp+ n,50)].

It should be noted for (17) that as n increases the range of values that can be
obtained outside Karl Pearson’s tables are reduced since the last term of (17)
contains I1.(50, ¢ + n). A similar observation is noted for (18). From a practical
standpoint the computational labor restricts n to fairly small values. Using (17)
we may easily compute for example,

I.6(52, 48) = I.6(50 + 2, 48)
1

= s [(99)(98)1.60(50, 48) — 2(99) (48)1.50(50, 49) + (49)(48)I (50, 50)].
(51)(50)
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Substituting the necessary values from Karl Pearson’s tables we calculate
I.60(52, 48) = .9465248.
Similarly using (18) we may calculate
I.10(48, 52) = .0534752.
As a check on the computations, we use the well-known identity
I.(p,q) = 1 — Li.(p, ¢),
whereAp' = g and ¢’ = p. Then
T.0(48, 52) = 1 — I.4(52, 48)
=1 — .9465248
.0534752.

In like manner formulae (15) and (16) may be used to write general formulae
for obtaining half values for p or ¢ greater than 10.5, i. e., for values not in-
cluded in Karl Pearson’s tables. In particular,

= ._1__ (n) _[(n
L 00500 = i 05+ ¢+ 010050 - (})
-q(9.5 4+ ¢ +n) " PL(105,g+ 1) -+ (=1)*(g+ n — 1)™I1.(10.5,9 + n)],
and
= ___1_ (n) [
I.(p,10.5 + n) = 5 Fm® [(9.5 + 2 + n) "™ 1.(p,10.5) (1)

(20)
995+ p+n) " L(p+1,105) -+ (=D (p+n—1)"I(p+mn, 10.5)].

Using (19) we may compute

1

A15® [(19.5)®T 60(10.5,8) — 2(8)(19.5)1.(10.5,9)

I.0(12.5,8) =

=+ (9) (8)1.6(10.5,10)], = .4512367.
Similarly using (20) we obtain
I .4(8, 12.5) = .5487633.
Employing the check formula,
I.4(8,12.5) = 1 — I(12.5,8)
1 — 4512367

.5487633.
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.
ON A THEOREM BY WALD AND WOLFOWITZ

By Gorrrrizd E. NOETHER
New York University

Let On = (b1, r -, ha), (n = 1,2, - - ), be sequences of real numbers and for
all n denote by H.,...., the symmetrical function generated by hi' --- ha",
ie., He,...., = Z hil -+ hi" where the summation is extended over the n(n — 1)
-+- (n — m + 1) possible arrangements of the m integers ¢, , - - - , tm , such that
1<i¢;<mnand7; # 4, (G, k=1, ---,m). According to Wald and Wolfowitz

[1] the sequencés . are said to satisfy condition W, if for all integral r > 2

1 oar
=2 (hi—R)
n i=] = 0(1),1

[}L > (i — ﬁ)z]

=1

where b = 1/n 2 21 hs.
Given sequences A, = (a1, *++,as) and D, = (d1, -+, dn), consider the
chance variable

L, = diey + 0 +dnxn7

where the domain of (1, - -+, x.) consists of the n! equally likely permutations
of the elements of A, . Then it is shown in [1] that if the sequences A, and D,
satisfy condition W, the distribution of Ly = (L, — EL,)/s(L.) approaches the
normal distribution with mean 0 and variance 1 as n — . These conditions

! The symbol O, as well as the symbols 0 and ~ to be used later, have their usual meaning.
See e. g. Cramér (2, p. 122].



