NOTES

This section is devoted to brief research and expository articles on methology and
other short items.

—

A GENERALIZATION OF WALD’S FUNDAMENTAL IDENTITY

By GunnNAR Brom
Unaversity of Stockholm

1. Summary. The fundamental identity is generalized to the case of independent
random variables with non-identical distributions. The conditions for the
validity of the differentiation of the identity are discussed. The results given in
[1], [2], and [3] are obtained as special cases.

2. A property of cumulative sums. Let 21, 22, - - - be an infinite sequence of
independent random variables, Fi(z), Fa(2), - - - their distribution functions (d.f.)

and ¢1(t), ¢a2(f), - - - their moment-generating functions so that ¢,(t) = E (e™).
ay and by are given constants (ay > by, N = 1, 2, ---). n is defined as the
smallest integer N for which Zy = 2z, + --- + 2yis = ayor = by.

We first give two lemmas.
LemMa 1. If two positive quantities § and e can be found such that one at least
of the following conditions a) and b) are satisfied
a) P(z, > 6) > € for all v and lim sup ay <

N—

b) Pz, < —8) > efor all v and lim inf by > — o,
N—®

then for any k = 0
(1) lim N*P(n > N) = 0.

N—
An inspection of the proof of (4) in [4] shows that this formula holds when the
conditions of the lemma are satisfied. The lemma follows.
Lemma 1 can be generalized as follows.
LemMA 2. If two positive quantities & and € and a sequence c1, ¢z, -+ can be
found such that one at least of the following conditions a) and b) are satisfied

N
a) Pz + ¢, > 08) > eforall v, lim sup ay < «, lim sup X ¢, < o,
N—w®

N—o 1
b) Pz, + ¢, < —8) > eforallv,
N
lim inf by > — o, liminf 2, ¢, > — o,

N—oo N—»00 1
then (1) s true.
439
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Proor: In case a) we put 2, = 2, + Cvy Zy =2z and ay =ay + 2V ¢ .
The inequality Zy = ay then becomes Zy = ax . As P(z, > 8) > e and lim sup

- N—
ay < », Lemma 1 can be applied to the sequence 21 , 2z, - - - , and thus (1) is
true. When conditions b) are satisfied, the proof is analogous.

3. The generalized fundamental identity. In this section we shall consider
sequences of random variables of the type defined in Lemma 2. We shall prove
two theorems the first of which is valid for complex values of ¢ and the second
only for real values of ¢.

THEOREM 1. Assuming that

1°. one at least of conditions a) and b) of Lemma 2 is satisfied;
2°.b = by < ay < a, where a and b are finite;

3°. for some complex (or real) value of ¢, ¢,(t) exists for all v and s = 0 and
lim inf | 1)+~ | > 0,
then
2) Ele™@(l) -+ ea(®))7] = 1.

Proor. Let W,, denote the set of all sequences z; - « - 2y in the N-dimensional
Euclidean space Qy for which n = m (m < N), W, the projection of W, on @,
and W,y all sequences for which » > N. We have identically

N n
[Ef + ]e"N aFy e dFy = [ ¢ dFy o dFy = eu(®) - ox().
m=1 JW,, Wn>N N

Dividing by the right member and cancelling common factors we obtain

N
Do (o1 om)t f , emdF, ... dF,
@ ™ "
+ (prvcom)™ "N dFy - dFy = 1.
Wa>N
When N — « the first sum tends to the left member of (2). We thus have to
investigate the last term in (3) which we denote by Ry . We can write

Ry = (o1 an)—l N dF, «+- dF y

(4) Wasw
= (g1 on) " "P(n > N)E,5 ye'*™.

It follows from Lemma 2 that P(n > N) — 0. Asb < Zy < a by 2° we conclude
that Ry — 0. This proves the theorem.

TaEOREM 2. If, for some real value of t, ¢.(t) exists for all v and if quantities
¢, e > 0and 8 > 0 can be found such that at least one of the following conditions
a) and b) are satisfied for all v N
a) lim sup ey < oo,llvim sup; ¢ < «© and

N—

—] 1 w tz —_— o o0
(58) 44,9 = = fb R > =12 ),
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N
b) liminfby > — oo, liminf 2, ¢, > — » and

N=— N—® 1
1 —d—c,
(5b) Buo =t [Teare >e =12,
‘Pv(t) LJ

then (2) holds.

The conditions of the theorem become more attractive if the theorem is
limited to the somewhat less general cases mentioned in the Corollary below.
The above formulation has been chosen mainly because of an important applica-
tion to identical variables in Sec. 6.

Proo¥r. The theorem is proved if we can show that Ry in (4) tends to zero when
N — . For that purpose we use the transformation (cf [5] and [3])

1 : tz
(6) Gy(Z; t) = m) ‘[m (4 dFy(Z), (y = 1, 2’ ...)‘

G,(z; t) is obviously a d.f. for every real ¢ (for which ¢,(¢) exists). When (5a)
holds,

Plz, + ¢, > 8| Gi(z; 0)] = A(t, 9).

Here the expression in the left member denotes the probability that z, + ¢, > 8,
when G, is the d.f. of z, .

Consequently, when conditions a) are fulfilled, a sequence of random variables
with the d.f:s Gi(z; t), Ga(z; 1), - - - or, with one notation, G(f) satisfies the con-
ditions a) of Lemma 2. It follows that

lim P(n > N |G(t)) = 0.
N—»
Introducing G.(z; t) in Ry we find
Ry = f dG, - dGy = P(n > N |G(1)).
Wa>N

Consequently Ry — 0. When conditions b) are fulfilled, the proof is analogous.

COROLLARY TO THEOREM 2. If 1° ¢,(t)e'” < H(t) < o, 2°t s positive and
conditions a) of Lemma 2 hold or t is negative and conditions b) of Lemma 2 hold,
then the generalized fundamental identity is true.

For, in the first case l

t(d—c,) po 7]
€ dF, > £
‘Pv(t) §—c, H (t)
so that (5a) is satisfied, and similarly when ¢ is negative.

The following special case deserves particular attention as it covers most
cases occurring in practice and the conditions become very simple: If a sequence
of random variables satisfies conditions a) and b) of Lemma 1 simultaneously, a
sufficient condition for the validity of (2) for some given real value of t is that the
sequence ¢,(t) is bounded.

A,(t,9) 2 = a(t)
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4, Application to Poisson variables. As an application of (2) we consider a
sequence of Poisson variables with the parameters Am, , where M\ is a positive
quantity and m, are positive integers. From the well-known formula

¢'(t) = e)\m,(c‘—l)

we easily conclude that the conditions of Theorem 1 are valid if R(e*) = 1. (With
8 < 1in (5a) we find that (2) holds even for negative ¢.) If, in particular, we
choose ¢ so that e’ = 1 + 2—’;? = ¢, we have the simple formula

E =1 (k=12 ---).

6. Differentiation of the generalized fundamental identity. In this section ¢
is assumed to be real. We denote the kth derivative of ¢.(t) by o (t). We shall
prove the following theorem which corresponds to Theorems 1 and 2.

TureoreM 3. If for all t in a closed interval I the conditions stated in Theorems
o (1)

@)
with respect to both v and t (in I) for k = 1,2, -+ r, then the generalized funda-
mental identity may be differentiated r times with respect to t for any t in the interior
of 1.

We use a method of proof which is similar to that used in [2]. We first show
that the sum in (3) may be differentiated r times under the integral signs and
secondly that the rth derivative of Ry tends to zero uniformly in ¢ when N — «.

The rth derivative of the general term of the series in (3) consists of a finite
number of terms of the form

1 or 2 are satisfied and if, in addition, the functions are uniformly bounded

Jm(t) = (‘Pl"'ﬁom)_lan , Z:\netzmdFl "'dFm (/.t é X;”,X = 1’2’ e r),
Wom

and the rth derivative of Ry in (4) consists of a finite number (which does not
depend on N) of similar expressions with N substituted for m and Wasx for
Wn. H, is a sum of m* and N* terms respectively which is symmetric in ».
(*)
The terms are functions of % (k =N\;v=1,2,--- m) and are thus major-
ated by the same constant C.
Further, we can always find a positive quantity £ such that for all ¢ in I

|Z:‘n€tzml < etolzmi < (etoz,,. + e—t.,z,,.).

Hence

(N | Jn(®) | < (@1 @m) ™t O fw, (e'?m 4 ¢ t0%m) GF, - - - dF .

m

The rest of the proof is divided into two parts corresponding to the conditions
of Theorem 1 and those of Theorem 2.
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When the conditions of Theorem 2 are fulfilled we make the transformation
(6) in (7) witht = fpand t = —# . Then

| Ju(®) | £ CM* [P = m | G(k)) + P(n = m | G(—1))] £ 20m* < .

This justifies the differentiation of the series in (3).
Substituting N for m and n > N for n = m in the above expression we further
have

| Jx(t) | = CN*[P(n > N | G(&)) + P(n > N | G(—4))],

and conclude from Lemma 2 with & = u in (1) that Jx(¢) tends to zero uniformly
in ¢. It follows that the rth derivative of Ry also tends to zero uniformly in ¢.

In the second part of the proof we assume the conditions of Theorem 1 to be
satisfied. We then write (7) in the following form

®) | Tn(®) | £ Clor -+ @m) ' m'P(n = m)Epm(e®*™ + ¢ "),

where E,_,, signifies the conditional expectation when it is known that n = m.
From the definition of n it follows that, when n = m, we have b, < Zn <
am_1 and Z,, = an, or < b, . Hence

Enen(e'®) £ Boem(@®™™ | Zn Z an) = EBuenle® " | Zpy + 20 2 aul
< -etodm-lE[etozm | Zm D> Am — bm—-l] < oo

The second exponential can be treated in a similar way. Thus J.(¢) is majorated
by a finite expression.

Finally, we substitute N for m and n > N for n = m in (8). I being a closed
interval it follows from condition 3° in Theorem 1 that we can find a constant
C such that

| Jn@) | = CN*P(n > N)E,sn(e"02N 4 ¢ %),

From the definition of n and condition 2° in Theorem 1 we have b < Zy < a.
An application of Lemma 2 then shows that Jy(¢) tends to zero uniformly in ¢.
This proves the theorem.

CoOROLLARY T0 THEOREM 3. When the conditions stated in Corollary of Theorem 2
are fulfilled for all t in the closed interval I, Theorem 3 is true.

This is obvious.

6. The fundamental identity for identically distributed variables. In the
special case of identically distributed variables for which P(z = 0) < 1 and
0 < ¢(t) < « we infer from Theorem 1 that the fundamental identity

) Ele"™p)™" = 1
holds if ¢ is complex and | ¢(¢) | = 1. This is the case discussec; in [1].
Further, when P(z = 0) < 1, the integrals f e“dF and f ¢”dF cannot both
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be zero for every o > 0 and 8 < 0, and thus we infer from Theorem 2 that the
fundamental identity holds for all real ¢ (if the limits ax and by are chosen in
accordance with the conditions of this theorem). This proposition is somewhat
more general than that proved in [3] by a similar method.

It also follows from the last remark and Theorem 3 that, when P(z = 0) < 1,
(9) can be differentiated any number of times for any real ¢. This proposition
contains the results in [2] and [3] as special cases.

7. A generalization. We finally remark that the assumption made in Theorem
8 that the expressions containing derivatives of ¢,(f) are uniformly bounded is
unnecessarily restrictive. For example, it seems possible to prove that the first
derivative of (2) may be obtained by differentiation under the expectation
gign if the series (cf. Corollary 1 to Theorem 7.4. in [6])

z.o: P(n = m) i ‘P:(t)
meml =1 oy(t)

is uniformly convergent with respect to ¢.
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SPREAD OF MINIMA OF LARGE SAMPLES

By Brockway McMiLLan
Bell Telephone Laboratories, Murray Hill, N. J.

1. Theorems. Let « have the continuous cumulative distribution function
F(z). Let (z1, --- ,zx) be a sample of N independent values of z and y =
inf (x1, - -+ , zx). Then y is a random variable with the cumulative distribution
function

(1) Gv(y) =1 — (1 — Fiy)".
Let K values of the new variable y be drawn, (y1, -- -, y¥x) and let the spread

W=SUP(?/1,"',?IK) —inf(il/h"',?/x)-



