NOTES

This section is devoted to brief research and expository articles and other short items.
e

NOTE ON THE CONSISTENCY OF THE MAXIMUM LIKELIHOOD
ESTIMATE!

By ABramam WaLp

Columbia University

1. Introduction. The problem of consistency of the maximum likelihood
estimate has been treated in the literature by several authors (see, for example,
Doob [1)* and Cramér [2]*). The purpose of this note is to give another proof of the
consistency of the maximum likelihood estimate which may be of interest because
of its relative simplicity and because of the easy verifiability of the underlying
assumptions. The present proof has some common features with that given by
Doob, insofar that both proofs make no differentiability assumptions (thus, not
even the existence of the likelihood equation is postulated) and both are based
on the strong law of large numbers and an inequality involving the log of a
random variable. The assumptions in the present note are stronger in some
respects than those made by Doob, but also the results obtained here are stronger.
For the sake of simplicity, the author did not attempt to give the most general
results or to weaken the underlying assumptions as much as possible. Remarks
on possible generalizations are made in Section 4.

Let X;, X,, ---, etc. be independently and identically distributed chance
variables. The most frequently considered case in the literature is that where
the common distribution is known, except for the values of a finite number of

1 The author wishes to thank J. L. Doob for several comments and suggestions he made
in connection with this note.

2 According to a communication from Doob, his Theorem 4 is incorrect, but is correct if

the class of almost everywhere continuous functions in that theorem is replaced by a suitable
class C of functions. The class C can be any one of a variety of classes; for example, the class
of bounded almost everywhere continuous functions, or the larger class of almost every-
where continuous functions each of which is less than or equal in modulus to any one of a
prescribed sequence of functions with finite expectations. His Theorem 5 on the consistency
of the maximum likelihood is then dependent on the class C used in Theorem 4.

3 The proof given by Cramér [2], pp. 500-504, establishes the consistency of some root
of the likelihood equation but not necessarily that of the maximum likelihood estimate
when the likelihood equation has several roots. Recently, Huzurbazar {3] showed that
under certain regularity conditions the likelihood equation has at most one consistent
solution and that the likelihood function has a relative maximum for such a solution.
Since there may be several solutions for which the likelihood function has relative maxima,
Cramér’s and Huzurbazar’s results taken together still do not imply that a solution of the
likelihood equation which makes the likelihood function an absolute maximum is necessarily
consistent.
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596 ABRAHAM WALD

parameters, 6", 6, - -, 6". In this note we shall treat the parametric case. For
any parameter point 0 (0 ..., 6, let F(z, 6) denote the corresponding
cumulative distribution function of X;;ie., F(z, ) = prob. {X; < z}. The
totality @ of all possible parameter points is called the parameter space. Thus,
the parameter space Q is a subset of the k-dimensional Cartesian space.

It is assumed in this note that for any 6, the cumulative distribution function
F(x, 6) admits an elementary probability law f(z, 6). If F(z, 6) is absolutely
continuous, f(z, 6) denotes the density at z. If F(z, 6) is discrete, f(z, 6) is equal
to the probability that X; = z.

Throughout this note the following assumptions will be made.

AssumprioN 1. F(x, 0) s either discrete for all 0 or vs absolutely continuous
for all 6.

Before formulating the next assumption, we shall introduce the following
notations: for any 6 and for any positive value p let f(z, 8, p) be the supremum of
f(z, ') with respect to 6/ when |0 — 6’| < p. For any positive r, let o(z, )
be the supremum of f(x, §) with respect to 8 when | 8| > r. Furthermore, let
f*(x, 6, p) = f(z, 0, p) when f(z, 0, p) > 1, and =1 otherwise. Similarly, let

o*(x, r) = ¢(x, r) when o(z, r) > 1, and =1 otherw1se
AssumpTION 2. For sufficiently small p and for sufficiently larger r the expected

values [ log f*(x, 0, p) dF (z, 6,) and [ log ¢*(z, r) dF (z, 6,) are finite where

6o denotes the true parameter point.*
Assumprion 3. If lim 0; = 6, then lim f(z, 6:;) = f(x, 6) for all x except perhaps

on a set which may depend on the limit point 6 (but not on the sequence 6;) and
whose probability measure is zero according to the probability distribution corre-
sponding to the true parameter point 6, .

AssuMpTION 4. If 6, is a parameter point different from the true parameter point
0o , then F(x, 6,) % F(x, 6) for at least one value of .

Assumprion 5. If lim | 6;| = o, then lim f(x 0;) = 0 for any x except perhaps

on a fixed set (mdependent of the sequence 0,) whose probability is zero accordmg
to the true parameter point 6, .
AssumPTION 6. For the true parameter point 6, we have

[ 108 160,60 | aFGe, 89 < .

AssumprioN 7. The parameter space @ is a closed subset of the k-dimensional
Cartesian space.

AssumptioN 8. f(x, 8, p) is a measurable function of z for any 6 and p.

It is of interest to note that if we forbid the dependence of the exceptional set
on.§ in Assumption 3, Assumption 8 is a consequence of Assumption 3, as can
easily be verified.

4 The measurability of the functions f*(z, 6, p) and ¢*(z, ) for any 6, p and r follows
easily from Assumption 8.



MAXIMUM LIKELIHOOD ESTIMATE 597

In the discrete case, Assumption 8 is unnecessary. In fact, we may replace
f(z, 0, p) everywhere by j(z, 0, p) where f(z, 6, p) = f(x, 6, p) when f(z; 6) > 0,
and f(z, 6, p) = 1 when f(z, 6) = 0. Here 6, denotes the true parameter point.
Since f(z, ) > 0 only for countably many values of x, f(z, 6, p) is obviously a
measurable function of z.

In the absolutely continuous case, F(z, 6) does not determine f(x, 6) uniquely.
If Assumptions 3, 5 and 8 hold for one choice of f(z, ), they do not necessarily
hold for another choice of f(z, 8). This is in a way undesirable, but assumptions
of such nature are unavoidable if we want to insure the consistency of the
maximum likelihood estimate. It is, however, possible to formulate assumptions
which remain valid for all possible choices of f(z, §) and which insure the. con-
sistency of the maximum likelihood estimate for a particular choice of f(x, 6).
In this connection the following remark due to Doob is of interest. Let Assump-
tions 3’ and 5’ be the same as 3 and 5, respectively, except that the exceptional
set is permitted to depend on the sequence 6, . If 3’ and 5’ hold for one choice of
f(z, 6), they also hold for any other choice. Doob has shown that Assumptions 3’
and 5’ insure the existence of a choice of f(x, ) for which Assumptions 3, 5 and 8
hold. Thus, one may say that Assumptions 3’ and 5’ are the essential ones and
the stronger assumptions 3, 5 and 8 are needed merely to exclude a “bad”
choice of f(z, ).

2. Some lemmas. In this section we shall prove some lemmas which will be
used in the next section to obtain the main theorems. Let 6, be the true parameter
point. By the expected value Eu of any chance variable u we shall mean the
expected value determined under the assumption that 6, is the true parameter
point. For any chance variable u, 4’ will denote the chance variable which is
equal to u when u > 0 and equal to zero otherwise. Similarly, for any chance
variable u, the symbol »’/ will be used to denote the chance variable which is
equal to v when v < 0 and equal to zero otherwise. We shall say that the expected
value of u exists if Bu’ < . If the expected value of %’ is finite but that of '’
is not, we shall say that the expected value of  is equal to — .

Lemma 1. For any 6 = 6, we have

(1) E log f(X, 6) < E log f(X, 6)

where X is a chance variable with the distribution F(x, 6,).
Proor. It follows from Assumption 2 that the expected values in (1) exist.
Because of Assumption 6, we have

(2) E|logf(X, 6) | < .

If Elog f(X, ) = — «, Lemma 1 obviously holds. Thus, we shall merely consider
the case when E log f(X, 6) > — =. Then

6)) E|logf(X,6)| < w.
Let u = log f(X, 6) — log f(X, 6,)." Clearly, E |u| < ».Iti known that for
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any chance variable u which is not equal to a constant (with probability one)
and for which E | u | < «, we have®

4) Eu < log Ee".

Since in our case

5) Ee* £ 1,

and since u differs from zero on a set of positive probability (due to Assumption
4), we obtain from (4)

(6) Eu < 0.

Thus, Lemma 1 is proved.

We shall now prove the following lemma.
LevMMa 2. linox Elogf(X, 0, p) = Elog f(X, 6).
pu
Proor. Let f*(x, 6, p) = f(z, 6, p) when f(z, 6, p) = 1, and =1 otherwise.
Similarly, let f*(x, ) = f(z, §) when f(z, §) = 1, and =1 otherwise. It follows
from Assumption 3 that

] lim log f*(z, 6, p) = log f*(z, 6)

=0

except perhaps on a set whose probability measure is zero. Since log f*(z, 9, p)
is an increasing function of p, it follows from (7) and Assumption 2 that

(8) lim E log f*(X, 6, p) = E log f*(X, 6).
p=0

Let f**(x, 8, p) = f(x, 0, p) when f(z, 6, p) < 1, and =1 otherwise. Similarly, let
f**(x, 0) = f(z, §) when f(z, 6) < 1, and =1 otherwise. Clearly,

() | log f**(z, 6; p) | < | log f**(=, 6) |
and
(10) lim log f**(z, 6, p) = log f**(x, 6)
=0 - .
for all z except perhaps on a set whose probability measure is zero. The relation
(11) lim E log f**(X, 6, p) = E log f**(X, 6)
p=0
follows from (9) and (10) in both cases, when E log f**(X, 6) is finite and when
E log f**(X, §) = — . Lemma 2 is an immediate consequence of (8) and (11).
Lemma 3. The equation
(12) lim E log (X, r) = — .
holds.

s Tt is of no consequence what value is assigned to « when f(z, 6) or f(z, 6) is zero, since

the probability of such an event, because of (3), is zero.
¢ This is a generalization of the inequality between geometric and arithmetic means.
See, for example, HarRDY, LiTTLEWOOD, PoLYA, Inequalities, Cambridge 1934, p. 137, The-

orem 184.
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Proor. It follows from Assumption 5 that
(13) lim log ¢(z, ) = — =,

r=00

for any x (except perhaps on a set of probability 0). Since according to Assump-
tion 2,

(14) E lOg ¢*(X7 ‘I‘) < o,
and since log ¢(x, r) — log ¢*(x, r) and log ¢*(z, r) are decreasing functions of

r, Lemma 3 follows easily from (13).

3. The main theorems. We shall now prove the following theorems.
TrEOREM 1. Let w be any closed subset of the parameter space Q which does not
contain the true parameter point 6, . Then

f. SU (Xyo)(X 70)"' (Xnyo)
(15) prob. }g}o G«Pf 1 OFX / =0; =1.
f(Xl ) 00)f(X2 ’ 00) e f(Xﬂ ) 00)
Proor. Let ry be a positive number chosen such that

(16) E log o(X, 1) < E log f(X, 6).

The existence of such a positive number follows from Lemma 3. Let w; be the
subset of w consisting of all points 6 of w for which | 6 | < r,. With each point ¢
in w; we associate a positive value py such that

(17) E log f(X, 8, ps) < E log (X, 6,).

The existence of such a py follows from Lemmas 1 and 2. Since the set «; is
compact, there exists a finite number of points 6, ---, 6, in w; such that
S(61, ps,) + -+ + S(6n, ps,) contains w; as a subset. Here S(6, p) denotes the
sphere with center 6 and radius p. Clearly,

h
0= Soupf(xlyo) "'f(xnyo) = ;.f(ﬁm,m, Pﬂ;) "'f(xnyoiypm‘)

+ ¢(xl 3 ?"o) et ¢(xn ) 7"0)-
Hence, Theorem 1 is proved if we can show that

: f(leoirpoa)"'f(Xn,oi;POi)= }= o
(18)  prob {l’i‘i 6 AN EEEEs v munially it B RO

and

o Xy, 1) e (X, me) _
(19) prob {}.liflf(xl, 80) -+ [(Xn, 00 0} =1
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The above equations can be written as

(20) prob {hm Xn? [log f(Xe, 6:, ps;) — log f(Xa, 60)] = —w} =1

ne=00 q==]
(1 = 1) . s h)
and
(21) prob {lim 21 [log o(Xa, ro( — log f(Xa, 0)] = — w} =1

These equations follow immediately from (16), (17) and the strong law of large
numbers. This com;_)letes the proof of Theorem 1.
THEOREM 2. Let 0,(x1, - -+, z.) be a function of the observations.x, - - , Tn

such that

(22) ﬁguz,.; ;gzn,z's; = ¢ > 0 for all n and for all x1, - - - , ,.
1, 00) * ny O

Then
(23) prob {lim 8, = 6} = 1.

Proorv. It is sufficient to prove that for any € > 0 the probability is one that all
limit points 6 of the sequence {6,} satisfy the inequality |6 — 6| < e. The
event that there exists a limit point 8 of the sequence {8,} such that |6 — 6, | > e
implies thalta §ulg f@i, 8) - f(xn, 0) = f(x1,6,) -+ fxn, 8,) for infinitely

0| 2 e

many n. But then

lOS"u& f(1,0) -+ f(xn, 0)
24) 1L 2¢>0
( Jo, 00 - 7, )
for infinitely many n. Since, according to Theorem 1, this is an event with
probability zero, we have shown that the probability is one that all limit points
0 of {8,} satisfy the inequality |6 — 6| < e This completes the proof of
Theorem 2.

Since a maximum likelihood estimate 6,(x,, --- , x.), if it exists, obviously
satisfies (22) with ¢ = 1, Theorem 2 establishes the consistency of 8,(x1 , - - - , )

as an estimate of 6.

4. Remarks on possible generalizations. The method given in this note can be
extended to establish the consistency of the maximum likelihood estimates for
certain types of dependent chance variables for which the strong law of large
numbers remains valid.

The assumption that the parameter space Q is a subset of a finite dimensional
Cartesian space is unnecessarily restrictive. Let Q be any abstract space. All of
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our results can easily be shown to remain valid if Assumptions 3, 5 and 7 are
replaced by the following one: ‘
AssumeTION 9. It is possible to introduce a distance §(6y, 6:) in the space Q such
that the following four conditions hold:
(i) Tke distance 5(6, , 6;) makes Q to a metric space
(i) lim f(z, 6:) = f(z, 6) f lim 6; = 6 for any = except perhaps on a set which

may depend on 0 (but not on the sequence 6;) and whose probability measure is zero
according to the probability distribution corresponding to the true parameter point 6, .
(iii) If 6 is a fived point in Q and lim 8(6;, 6) = oo, then lim f(z, 6;) = O

for any x.
(iv) Any closed and bounded subset of @ is compact.
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ON WALD’S PROOF OF THE CONSISTENCY OF THE MAXIMUM
LIKELIHOOD ESTIMATE

By J. WoLrowiTtz

Columbia University

This note is written by way of comment on the pretty and ingenious proof of
the consistency of the maximum likelihood estimate which is due to Wald and is
printed in the present issue of the Annals. The notation of this paper of Wald’s
will henceforth be assumed unless the contrary is specified.

The consistency of the maximum likelihood estimate is a “weak’’ rather than
a ‘‘strong” property, in the technical meaning which these words have in the
theory of probability, i.e., it is a property of distribution functions rather than of
infinite sequences of observations. Prof. Wald actually proves strong convergence,
which is more than consistency. His proof uses the strong law of large numbers,
and he remarks that his method “can be extended to establish consistency of the
maximum likelihood estimates for certain types of dependent chance variables
for which the strong law of large numbers remains valid.” Below we shall use
Wald’s lemmas to give a proof of consistency which employs only the weak law
of large numbers. Not only does this proof have the advantage of being expedi-
tious, but it can be extended to a larger class of dependent chance variables.

The consistency of the maximum likelihood estimate follows from the following

THEOREM. Let n and e be given, arbitrarily small, positive numbers. Let S(6y , n)
be the open sphere with center 6, and radius n, and let @(9) = @ — S(6, u). Let



