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second application of the continuity theorem, but on the obvious fact that()
implies

53 gu - f «(2)f(z) dz,

where the step function {¢,] converges uniformily to a continuous monotonic
q(x)).

The following corrections apply to the paper, “On the normal approximation
to the binomial distribution” (Annals of Math. Stat., Vol. 16, (1945), pp. 319-
329).

(1) Equation (27) gives two variants of an estimate for the error p. The second
should simply restate the first one in terms of the variable z; in other words,
the expression (p° + ¢°) in the second line of (27) should be replaced by
(1 — pr/0) " + ¢*(1 + gz /o).

(2) The estimate p < o °/300 given in (28) is not valid over the entire range
for which it is claimed. However, the further theory depends only on the fact
that p = O(¢c™*), and the estimate p < o */30 is both correct and sufficient for
our purposes. (Actually, no changes whatever are required in the proofs, since
(28) is used explicitly only for a range where it is correct as stated).

(3) On p. 324 it is stated that under the conditions of the main theorem
(p. 325) k > 4, n — k > 4, whereas in reality the value 3 can occur in extreme
cases. Fortunately, the assertion is not used anywhere in the proof, and the
error p is negligible in all cases.

Accordingly, no changes are required either in the formulation or the proof of
the theorems. I am indebted to Dr. W. Hoeffding for calling my attention to the
slips.

(4) The first minus sign in footnote 5 should be an equality sign and the second
minus in (70) a plus.

—
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1. A Method of Estimating the Parameters of an Autoregressive Time Series.
S. G. GrURYE, University of North Carolina.

The general autoregressive process of the second order is defined by the equations
2 =Xi+ e,
Xi+aXia+aXio= e,

where z, is the value actually observed at time ¢, X, the corresponding theoretical value,
«: the disturbance and ». the superposed variation. The estimates of a; , @z given by Yule’s
method are biased and inconsistent if 5. is not identically zero, the permanent bias being a
function of the unknown variance of 5, . The present paper proposes a method of estimation
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which is unaffected by the presence of n: , and seems to be better than any other known
method; and this conjecture is supported by the results of application to observational and
artificial series. In this method the estimates a; , a, are obtained by minimizing

n 1 N—k 2
'Ea (N——k—rg)ltgs (Tt + G1Temr + A3Zems) (Tegk + G Teir + azxq.k_z)} ,

where n is some number small in comparison with N (which is the number of observa-
tions). In the above expression the usual approximation of substituting (N — k — 2)r; for
I¥-kxx,. may be made for computational convenience. The method has been used for
fitting autoregressive processes to the series of annual averages of Wolfer’s sunspot num-
bers and that of Myrdal’s Swedish cost of living index numbers. The method is applicable
to higher order processes.

2. Most Powerful Rank Order Tests. (Preliminary Report). WassiLy HoerFpING,
University of North Carolina.

Let X11, -+, X1ny, -+, Xk1, -+, Xkns be random variables with a joint probability
function P(S) and let P{Xi; = X} =0if g = h (¢ =1, --- , k). Let Hyo be a hypothesis
which implies that P(8) is invariant under all permutations of X1, -++, Xin; ¢ =1, -+,
k). Let r;; (j = 1, --- , m;) be the ranks of X1, -+ , Xin; . Under H, the M = IIn;! rank
permutations B = (11, *** ,Tini , *** , Tkl , *** , Tkax) have the same probability P(R) =
M-, A test which depends only on the permutations R is called a rank order test (R.0.T.).
A R.O.T. of size m/M which is most powerful (M.P.) against a simple alternative, P;(S),
is determined by m permutations R for which P;(R) takes on its m largest values.

For example, let the pairs (X1, Y1, ---, (Xn, Y,) be independent and identically
distributed. Let Hystate that X; , ¥, are independent, and let H,(p) be the hypothesis that
X:, Y; have a bivariate normal distribution with correlation p. We may assume that
X, < --+ < X, and consider the ranks r; of the ¥Y’s only. A R.O.T. which is uniformly M. P.
against all H(p) with p > 0 does not exist except for small n. The M.P.R.O.T. against small
p > 0is determined by the largest values of 2%7_; (EZ;)(EZ,;), where EZ;is the expectation
of the ¢-th order statistic in a sample of n from a standard normal distribuion. The M. P.
unbiased R.0.T. against small values of |p|is based on the statistic Z; Z; (EZ:Z;)(EZy;Zy;).
The M.P. R.0.T. against p close to 1 is obtained by expanding the probability of (ry , ---
rn) in powers of {(1 — p)/(1 + p)}/2.

’

3. The Comparison of Percentages in Matched Samples. WiLLiAM G. COCHRAN,
Johns Hopkins University.

In this paper the familiar x2 test for comparing the percentages of successes in a number of
independent samples is extended to the situation in which each member of any sample is
matched in some way with a member of every other sample. This problem has been encoun-
tered in the fields of psychology, pharmacology, bacteriology, and sample survey design.
A solution has been given by McNemar (1949) when there are only two samples.

In the more general case, the data are arranged in a two-way table with r rows and ¢
columns, in which each column represents a sample and each row a matched group. The
test criterion proposed is

el — DE(T; — T
N C(Eu,;) - (Euf) ’

Q

where T, is the total number of successes in the jtt sample and 1, the total number of suc-
cesses in the 7t row. If the true probability of success is the same in all samples, the limit-
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ing distribution of @, when the number of rows is large, is the x? distribution with (¢ — 1)
degrees of freedom. The relation between this test and the ordinary x? test, valid when
samples are independent, is discussed.

In small samples the exact distribution of @ can be constructed by regarding the row
totals as fixed, and by assuming that on the null hypothesis every column is equally likely
to obtain one of the successes in a row. This exact distribution is worked out for eight
examples in order to test the accuracy of the x* approximation to the distribution of @ in
small samples. The number of samples ranged from ¢ = 3 to ¢ = 5. The average error in the
estimation of a significance probability was about 14 per cent in the neighborhood of the
5 per cent level and about 21 per cent in the neighborhood of the 1 per cent level. Correction
for continuity did not improve the accuracy of the approximation, although it is recom-
mended when there are only two samples. Another approximation, obtained by scoring each
success as ‘1’ and each failure as ‘“0’’ and performing an analysis of variance on the data,
was also investigated. The F-test, corrected for continuity, performed about as well as the
x? approximation (uncorrected), but is slightly more laborious.

The problem of subdividing x? into components for more detailed tests is briefly dis-
cussed.

4. A Method of Estimating Components of Variance in Disproportionate Num-
bers. H. L. Lucas, North Carolina State College.

By including sufficient effects in the forward solution of the Abbreviated Doolittle
method, components of variance may be estimated from disproportionate data. The pro-
cedure is very systematic, and thus, is adaptable to routine computational work. The
computations will be described, and the utility of the method briefly discussed.

5. On the Theory of Unbiased Tests of Simple Statistical Hypotheses Specifying
the Values of Two Parameters. (Preliminary Report). STANLEY L. IsaAcsoN,
Columbia University.

In the Neyman-Pearson theory of testing simple hypotheses, in the one-parameter case,
alocally best unbiased region is called ‘“‘type A.”’ It is obtained by maximizing the curvature
of the power curve at the point 8 = 6 specified by the hypothesis, subject to the conditions
of size and unbiasedness. For the two-parameter case, Neyman and Pearson considered
“type C” regions (Stat. Res. Mem., vol. 2 (1938), p. 36). The definition of these regions
requires one to choose in advance a family of ellipses of constant power in an infinitesimal
neighborhood of the point (6, , 8;) = (80, 63) specified by the hypothesis. The natural
generalization of a ““type A’ region is a ‘“‘type D’’ region, which maximizes the Gaussian
curvature of the power surface at (8] , 63), subject to the conditions of size and unbiased-
ness. This definition does not require one to choose a family of ellipses in advance. This
approach leads to a new problem in the calculus of variations. A sufficient condition is
obtained which plays the role of the Neyman-Pearson fundamental lemma in the “type A’
case. An illustrative example is given. (Prepared under sponsorship of the Office of Naval
Research.)

6. A Note on Orthogonal Arrays. Ras CuaNDRA Bose, University of North
Carolina.

Consider a matrix 4 = (a;,) with .V rows and m columns, each element a;; sfanding for
one of the s integers 0,1,2, --- , s — 1. Let us take the partial matrix obtained by choosing
any { < m columns of A. Each row now consists of an ordered ¢{-plet of numbers, and each
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element has one of s possible values, there are s¢ possible ¢-plets. The matrix A may be
called an orthogonal array (N,m, s, t) of size N, m constraints, s levels and strength ¢, if by
choosing any ¢t columns whatsoever every possible ¢-plet occurs the same number of times.
Clearly N = Xs® where X is an integer. Such arrays have been considered by Rao and are
useful for various experimental designs. The existence of an orthogonal array (s? M, s, 2) is
equivalent to the existence of a set of orthogonal Latin squares of side s and m constraints
(i.e., the number of Latin squares in the set is m — 2). The fundamental question that can
be asked regarding orthogonal arrays is the following: What is the maximum number of
constraints for an orthogonal array, given N, s and ¢? Denote this number by f(V, s, t),
then from known properties of Latin squares f(s?, s, 2) = s +1, if s is a prime or a prime
power, and a theorem by Mann states that f(s2,s,2) = , 4+ 1, if s = p}! --- pi¥ , where
P1, -+ , pxare different primes, and r is the minimum of p3° , p3* --- pi¥ . The following
generalisation of Mann’s theorem is proved in this note:

f(N1N2 A Nk 3 S182 = Sk 1”) =Mln{f(N1 )slt)rf(N2 )827t)7 A ’f(Nk » Sk ’t)}'

7. Transformations Related to the Angular and the Square Root. MURRAY F.
FrEEMAN AND JoEN W. TUkEY, Princeton University.

The use of transformations to stabilize the variance of binomial or Poisson data is
familiar (Anscombe, Bartlett, Curtiss, Eisenhart). The comparison of transformed binomial
or Poisson data with percentage points of the normal distribution to make approximate
significance tests or to set approximate confidence intervals is less familiar. Mosteller and
Tukey have recently made a graphical application of a transformation related to the
square-root transformation for such purposes, where the use of ‘‘binomial probability
paper’’ avoids all computation. We report here on an empirical study of a number of ap-
proximations, some intended for significance and confidence work, and others for variance
stabilization. (Prepared in connection with research sponsored by the Office of Naval
Research).

8. Standard Inverse Matrices for Fitting Polynomials. F. J. VERLINDEN, North
Carolina State College.

For fitting polynomials of the type, y = bez® + bix + bs2? + --+ + bna™, with the z’s
equally spaced, published tables of orthogonal polynomials may be used. This procedure
does not yield the b’s directly, nor their variances or covariances, although such may be
obtained by proper computations which are moderately tedious. Insome types of statistical
work, the b’s and their variances and covariances may be desired. These may of course be
obtained directly by the method of least squares but the computational work is prodigious
relative to that for the orthogonal polynomial approach. When the z’s are equally spaced
the elements of the variance-covariance matrix may be put in the simple form of sums of
powers (including the zero power) of successive integers from zero to n (n equals one less
than the number of observations). The elements of the inverses of matrices of this type
have been worked out algebraically in terms of n for polynomials up to and including the
quintic (m = 5). With these standard inverse matrices, the b’s and their variances and co-
variances may quickly be obtained once the elements are evaluated numerically. These
elements have been evaluated numerically up to n = 20.

9. Mathematical Models in Biology. J. A. RAFFERTY, Department of Biometrics,
School of Aviation Medicine, Randolph Field, Texas.

From the point of view of a bio-medical research administrator, mathematical models
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will assume a greater role in biological research than heretofore. In anticipation of this
trend, certain philosophical implications of models in biological theory and scientific theory
in history are examined. A hierarchy of abstraction-levels in biology is delineated, and the
role of mathematical models at these levels is illustrated by examples from the literature.
Proposals arc made for a concentration of mathematical effort on certain important bio-
logical problems. Remarks are made on the capabilities and limitations of models in biology.

10. Small Sample Performance of Biological Statistics. IRwiN Bross, Johns
Hopkins University.

In this paper the dilution method for estimating bacterial density is investigated by an
exact small sample method and also by an approximate one. Methodologies and design of
experiments are compared for various small sample cases.

11. Methodology in the Study of Physical Measurements of School Children.
B. G. GREENBERG AND A. HucHEs BryAN, University of North Carolina.

In a series of investigations to determine by small-sampling technique what physical
differences, if any, occur between children of differing socio-economic backgrounds, several
problems of methodology arose. A pilot study was undertaken to assure maximum efficiency
at each step. This paper reports some of these results.} It was found that the children could
remain dressed (with the exception of boys’ bi-iliac measurement) without changing the
magnitude of the differences. The pilot study enabled us to decide how many observers to
use, and how much duplication of measurements by them was necessary. Minimum sample
sizes were estimated to indicate physical differences of predetermined magnitudes. It was
found that the age grouping 96-143 months was optimal from the standpoint of indicating
physical differences between children of differing socio-economic levels. Boys and girls in
the upper socio-economic levels were both taller and heavier for their age in this age group.
There were no weight differences, however, when weight was adjusted fot age and height.
Measurement of the bi-iliac and transverse chest diameter provided little additional in-
formation on physical differences. The calf circumference, an indicator of muscle mass and
subcutaneous fat, is suggested as being a sensitive supplementary index to indicate physi-
cal differences when age and height are adjusted.

12. Tetrad Analysis in Yeast. A. S. HouseHOLDER, Oak Ridge National Labora-
tory, Oak Ridge, Tennessee.

In neurospora all four products of meiosis are recovered in the four spores of an ascus.
In crosses AB X ab the asci are of three types, designated I, IT or III according as all four,
none, or two spores resemble parents. Frequencies of these types, P, P’ and P? are the
observables. If there were no exchange P’’ would be zero; and one should have P’ = 0
or } according to whether the loci were on the same or different chromosomes.

Assuming only that no exchange occurs between sister chromatids and neglecting chro-
matid interference, one can calculate without further assumptions a frequency P’ of
exchanges between a single locus and its centromere from data on three or more genes taken
in pairs by equations

Sij = S0Sej, P! =21 — s)/3,
where the subscript 0 refers to a centromere. Lindegren makes such calculations from his

own data, by taking groups of three, but makes no effort to reconcile discrepancies. Ney-
man’s modified chi-square, however, permits combining all observations in a set of equa-
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tions that yields easily to rapidly converging iterative solution. The equations are

28 T si(nii +ni)ni} + 07 = 2 silni; + ni)*@ni} — ni7h),
ik i

where n;; is the number in class I and II combined for the loci 7 and j, n;; the number
class in III, and only those pairs (¢, j) are included which are found to be independent.
The argument of A. R. G. Owen (Proc. Roy. Soc., Ser. B, Vol. 136 (1949) pp. 67-94.)
can be paraphrased for the predent case and a suitable generating function P(\, %) is being
sought providing a metric. The specific one proposed by Owen is ruled out since s =
P(—1%,u) takes on a negative value for one locus, which is not possible with Owen’s function.

13. Contribution to the Probabilistic Theory of Neural Nets. I. Randomization
of Refractory Periods and of Stimulus Intervals. ANATOL RAPoPORT, University
of Chicago.

Aggregates of neurons are considered in which the frequency of occurrence of neurons
with a specified value of the refractory period follows certain probability distributions.
Input-output functions are derived from such aggregates. In particular, if input and output
intensities are defined in terms of stimulus frequencies and firing frequencies per neuron
respectively, it is shown that a rectangular distribution of refractory periods leads to a
logarithmic input-output curve. If input and output are defined in terms of the total
number of stimuli and firings in the aggregate, it is shown how the ‘‘mobilization’’ picture
leads to the logarithmic input-output curve.

By randomizing the intervals between stimuli received by a single neuron and by intro-
ducing an inhibitory neuron a very simple ‘“filter net’’ can be constructed whose output
will be sensitive to a particular range of the input, and this range can be made arbitrarily
small.

14. Theoretical and Experimental Aspects in the Removal of Air-Borne Matter
by the Human Respiratory Tract. H. D. LaNpanL, University of Chicago.

The principal factors governing the fate of a particle in the respiratory tract are impac-
tion due to inertia, settling due to gravity and Brownian movements. For a given respira-
tory pattern, it is possible to calculate the probable fate of a particle from a knowledge of
the geometry of the passages. These calculations have been carried out in such a manner as
to obtain the theoretical amounts of material deposited in various regions of the lungs as
well as the relative amounts in various fractions of the expired air. Similarly, it is possible
to estimate the probable fate of a particle which passes through the nasal passages. Ex-
periments have been carried out to verify a number of these predictions. On the whole, the
agreement, as illustrated in the slides, is fairly satisfactory when one considers the com-
plexity of the calculations.

15. An Application of Biometrics to Zoological Classification. F. M. WADLEY,
Navy Department, Washington, D. C. .
Statistical problems in taxonomy are discussed; attention must be paid to variation of

individuals as well as of group means. Covariance analysis and the discriminant function
technique are applied to multiple measurements in groups of molluscan fossils.

16. The Analysis of Hemotological Effects of Chronic Low-Level Radiation.
Jack Mosaman, United States Atomic Energy Commission, Oak Ridge, Ten-
nessee.
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Several methods are investigated for analyzing the possible effects of chronic low-level
irradiation upon the employees of the operating contractors of the US AEC. The effects
investigated are those on the red blood count, hemoglobin, white blood count, lymphocytes
and neutrophils. The analysis includes measurements of significant differences among
individuals, geographic sites and the exploration of various indices of exposure to radiation.
A non-parametric determination of trend values for individuals which may be applied
to mass data is considered.

17. Statistical Problems in Psychological Testing. Epwarp E. CureTroN, Uni-
versity of Tennessee.

Though great progress has been made in mathematical statisticsin recent years, a number
of the major statistical problems encountered in the development and use of psychological
tests remain unsolved. Some of these problems are outlined, with particular reference to
the mathematical models and assumptions implied by psychological theory, by the nature
of the experimental data, and by the conditions under which the results and findings are
to be applied.

18. Accuracy of a Linear Prediction Equation in a New Sample. GEorGE E-
NicuoLsoN, Jr., University of North Carolina.

The problem considered is as follows. Given two samples S; and S; of N, and N observa-
tions on a p + 1 character random variable (y, 21 - -+ z,). Let Y, and Y, be the linear regres-
sion equation computed by the method of least squares from each sample. The effect of
S(ys — Y1)?
S(yz - Yz)
of the predicting efficiency of Y, in S relative to Y, when the X; are fixed for the usual
regression model. The general multivariate case is also considered.

using Y to predict the %’s in S; is considered. The ratio & - s used as a measure

19. Independence of Quadratic Forms in Normally Correlated Variables. Yuki-
yost Kawapa, Tokyo University of Literature and Science, Tokyo, Japan.

An extension is given of theorems of Craig, Hotelling and Matérn which includes the
following theorem, proved by a new method: If two quadratic forms Q, , @; in normally and
independently distributed variates with zero means and unit variances satisfy the four
conditions E(QiQi) = E(Q)E(Q)), fori,j = 1, 2, then the product of the matrices of the
two forms in either order i$ zero.

20. Bounds on the Distribution of Chi-square. S. A. Vora, University of North
Carolina.

Let
& ®
=2 - np)?/np;,  x* = PACE S B Npp*/ Np;,
[ k
where v; > 0, 213 vi=mn,p, > 0,2)3 p, =1land N = n + k/2. Bounds on the multinomial

probability T in terms of x'2 are obtained. A triangular transformation of

zo= (v + ¥ — Np)/{Np:(1 — p @G=1,-,k=-1),
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to y; is applied so that
k-1
d-x?= Z yi,
=1

where d is determined later by equating the coefficients of x’2. Certain rectangles r(v)
with (y1, -+, ys—1) as a mid-point are non-overlapping and cover the entire space Ry
forv; =0, £1, 42, --- . If x"? < ¢, then bounds on 7 in terms of the integral of the (k —1)
dimensional normal frequency function over the rectangle r (v) are obtained. Prob. {x'2 < c}
is the sum of T over x”? < ¢, so the integral over the sum of rectangles whose mid-points
lie within the hypersphere x® < cis considered. Two hyperspheres, one which contains the
sum of those rectangles, and one which is contained in it are used for the bounds, giving

Ao+ Fy_1(cs) < Prob. {x? < ¢} < M-Fyi(cr),

where Fy_i1(z) is a chi-square distribution function with (k — 1) degrees of freedom and
A, A2, €1, Cz are functions of ¢, n, k and p;, -+ , pr . As n — «, both bounds tend to
Fjy_1(c). Bounds of the same form are obtained for Prob.{x? < C}. Closer bounds
for Prob.{x? < C} are given in terms of a non-central chi-square distribution.

21. Estimation of Genetic Parameters. C. R. HEnDERsoON, Cornell University.

Many applications of genetics and statistics to the improvement of plants and animals
deal with experimental data for which the underlying model is assumed to be.

P q
ya = E b.-z.'., + 2 Ui Zia + eﬂs
te=1 =1

where b; are unknown fixed parameters, ;. and z;, are observable parameters, the u; are
a random sample from a multivariate normal distribution with means zero and covariance
matrix || o;; ||, and the e, are normally and independently distributed with means zero
and variances ¢ . If o;; = 0 when ¢ > j and if o2 = ¢? , the model is the one usually as-
sumed when components of variance are estimated.

Three different estimation problems are involved, (1) estimation of b; under the assump-
tions of the model, (2) estimation of u; and (3) estimation of o;; . The first two problems
are not solved satisfactorily by the least squares procedure in which the u; are regarded
as fixed, but the maximum likelihood solution does lead to a satisfactory estima-
tion procedure.

Assuming that the o;; and o2 are known, the joint maximum likelihood estimates of
b; and u; are the solution to the set of linear equations

P q
2 i (2 tatia/) + Z Ui T Thatia/07) = Z Thala/oa, h=1,:--,p,
- a = a a

b4 q
2 ({« Tiahal 02) + Z uilo™ + 2 zia 2ha/02) = 2 Zha Yo/ol, h=1,--+,q.

Some important applications of this estimation procedure to genetic studies are described
and certain computational short-cuts are suggested.

The problem of estimating oi; has not been solved satisfactory although under certain
quite general assumptions the equations for the joint estimation of b; , w: , oi; , and o
can easily be written. The solution to the equations, however, is too difficult to make the
procedure practical. Nevertheless unbiased estimates of o:; can be obtained by equating
to their expected values the differences between certain reductions in sums of squares
computed by least squares and solving for the ¢;; . In general, the expectation of the reduc-
tiondueto by, -++ ,bp, 11, - ux(k < @is T 02; d*E(Y,Y:), where do are the elements
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of the matrix which is the inverse of the (p + k)2 matrix of coefficients and the Y, are the
right members of the least squares equations.

22. Estimating the Mean and Standard Deviation of Normal Populations from
Double Truncated Samples. A. C. CoHEN, Jg., University of Georgia.

The method of maximum likelihood is employed to obtain estimates of the mean and
standard deviation of a normally distributed population from double truncated random
samples. Two cases are considered. In the first, the number of missing variates is assumed
to be unknown. In the second, the number of missing (unmeasured) variates in each tail is
known. Variances for the estimates involved in each case are obtained from the maximum
likelihood information matrices. A numerical example is given to illustrate the practical
application of the estimating equations obtained for each of the two cases considered.

23. Minimax Estimates of Location and Scale Parameters. GorPINaATH KaLLI-
ANPUR, University of North Carolina.

If the joint fr. f. of the random variables X, , -+ , Xy contains only a scale parameter
and is of the form
1 ) N
a—N p ; "% : ’

then under mild restrictions the following theorem is proved:

- & . . .
THEOREM 1: If the loss function is of the form W = , the best or minimax estimale
o

- a—a\ 1 x; TN
f W = (=, ,=) da
() a QN [+ 3 a

&o(ﬂxl:“':"xN)=l‘&0(zly"'ny): n>0.

@o(r) of @ minimizes

w.r.t. & and further,

When both location and scale parameters are present and the joint fr. f. is of the form

i 11—0 I‘\'—o
a”p « ) ’ « ’

(under conditions similar to those in Theorem 1) we obtain two results for the estimation
of 8 and a, respectively, one of which is:

. 6—0 . . N
THEOREM 2: If the loss funciion is of the form W(——), the best estimate 8o(z) of 0 minimizes
o

® e 0—6\ 1 P — -
-[ [ W, ( > p(:rl 0 T = 0) da da
© [) a aN a a
_(zl+>\ 1N+)\) bo(zy, -+, zn) + A
and 6y LR = —_—

) )
u B “

These theorems have been applied to derive minimax estimates in the case of standard
distributions. Finally, the problem of estimating the difference between the location
parameters of two populations is briefly considered. The results obtained in this paper are
a continuation of the line of approach suggested in Theorem 5 of Wald’s, ““Contributions
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to the Theory of Statistical Estimation and Testing Hypotheses.” (Annals of Math. Stat.,
Vol. 10 (1939), pp. 299-225). (The present work was carried out under Office of Naval Re-
search contract.)

24. On Some Features of the Neyman-Pearson and the Wald Theories of Statis-
tical Inference, Their Interrelations and Their Bearing on Some Usual Problems
of Statistical Inference. S. N. Roy, University of North Carolina.

With two alternative hypotheses H, and H, it is shown that (i) the most powerful test
of H, with respect to H, is automatically an unbiased test in the sense that its power is
never less than (and usually greater than) the level of significance « and (ii) there is also
a least powerful test with its power not greater (usually less) than «. This means that all
tests have powers lying in between, which gives a complete picture of the possible family
of tests and provides a basis for defining efficiency of tests.

With the first kind of error « is tied up a minimum second kind of error 8 (comple-
mentary to the maximum power P), and the level at which « is fixed depends upon some
compromise between « and 8. This intuitive approach is formalised by the introduction of
loss functions related to and apriori probability weights for H; and H,, thus leading to
the first stage in the Wald treatment of dichotomy with two solutions in the observation
space corresponding respectively to minimum and maximum total risks. This is imme-
diately generalised to the first stage in the Wald treatment of multichotomy with minimum
and maximum total risk solutions. An important special case is discussed in whic¢h all the
possible alternatives to a particular hypothesis are, by our test procedure, indistinguish-
able among themselves, thus effectively forming only one alternative to the hypothesis,
which means a degenerate multichotomy. The bearing of this on most powerful tests on
an average under the Neyman-Pearson theory is also discussed.

The problem of testing a composite hypothesis which is usually treated in terms of the
Neyman-Pearson theory is posed and treated in terms of the (first stage) Wald theory and
an indication is given of how these notions could be applied to the usual problems of uni-
variate and multivariate analysis.

25. Note on Uniformly Best Unbiased Estimates. R. C. Davis, Naval Ordnance
Test Station, Inyokern, California. ‘

For the estimation in an absolutely continuous probability distribution of an unknown
parameter which does not possess a sufficient statistic, it is shown that no unbiased esti-
mate for the unknown parameter exists which attains minimum variance uniformly over
a parameter set of arbitrary nature. This result demonstrates the impossibility of obtain-
ing a generalized sufficient statistic first proposed by Bhattacharyya. Although not used
in this note it is surmised that Barankin’s powerful results on locally best unbiased esti-
mates can be applied to yield further results in this direction.

26. Competitive Estimation. HERBERT RoBBins, University of North Carolina.

Let 0 be a vector random variable with distribution function G(6) and let z be a vector
random variable whose frequency function f(z; 8) depends on 6. Two statisticians, A and B,
are required to estimate @ from the value of z. If A’s estimate is closer to 0 he wins one
dollar from B, and vice versa; in case of a tie no money changes hands. It is shown that 4
should estimate 6 by the function a(z) = median of posterior distribution of @ given z;
his expected gain will then be >0 whatever estimate B may use. If G(6) is not known to A
he should estimate it from the series of values of # which have been observed in previous
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trials. If these are not known, A should estimate G(6) from the values of z which have
previously occurred; how this may be done is discussed elsewhere (see Abstract 35).

From the point of view of the theory of games, when G(6) is unknown we have a game in
which the “rules’ are unknown and must be successively estimated from past experience.
Other examples arise whenever a game involves random devices whose probability dis-
tributions are not known to the players but must be inferred by statistical methods, in
general from secondary variables which contain only part of the total information. The
role of statistical inference in such ‘long term’’ games is fundamental.

27. The Effect of an Unknown ‘Location Disturbance’ on “Student’s” t based
on a Linear Regression Model. Urram CrAND, Boston University.

Consider y1, -+, YN1, YN141, -+ Yn , & set of observations ordered in time. If the
y's are normally and independently distributed according to N(a + 8(t — 1), ¢?) and we
want to find out if the y’s have changed with time, we usually employ a ‘“‘Student’s” ¢ type
of statistic with N — 2 degrees of freedom. If, as a consequence of the impact of a certain
unknown political or economic change in the past on the y’s, the ¥’s actually constitute
two independent, normal samples y,, -+ YN, , YNy41, -+ Y~ distributed according to
N(mi , 0%), N(m; , o®) respectively, a two-sample “Student’s’’ ¢ also based on N — 2 degrees
of freedom would be the appropriate statistic to use for the hypothesis m; = m. . If, in
fact, the latter situation describes the correct state of affairs, and the statistician employs
the ““‘Student’s’’ ¢ based on the regression model, he commits an error. The present paper
investigates the nature of such an error in the light of the point of impact as determined
by the magnitude of N; and the intensity of the impact as determined by the standardized
my — My

YT
N, N-NMN

28. Corrections for Non-normality for the Two-sample t and the F Distributions
Valid for High Significance Levels. RaLpu A. BrapLeEy, McGill University.

‘distance’ of this extraneous ‘shock’ on the ordered set of observa-

tions y.

The effects of non-normality of the parent population on common tests of significance
have long been of concern in the application of statistical methods to experimental data.
In this paper, the two-sample t-statistic is expressed as a simple multiple of the cotangent
of an angle between two lines in a space of dimensionality one less than the total of the
sample sizes; the F-statistic for k samples is expressed as a multiple of the cotangent of
an angle between a line and a plane of (k — 1) dimensions in a space, again, of dimension-
ality one less than the total of the sample sizes. The geometrical formulation is such as to
suggest approximations to the distributions of these statistics valid for large values of
the statistics, and these approximations are obtained. The approximations are shown to be
exact in the special cases where the parent population is normal, and a method of evalua-
tion of correction factors is given for a wide class of parent populations. The approximation
procedures are valid for the distributions under both null and non-null hypotheses.

29. Some Tests Based on the Empirical Distribution Function. (Preliminary
Report). James F. HANNAN, University of North Carolina.

Let X = (X;, X2, ---, X.) be an independent sample of #» where X; has thé continu-
ous c.d.f. F(z). Let Sa(z) be the empirical distribution function. Acceptance regions of
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the type {X:S.(z) < ¢(z) for all z} are considered for different specifications of ¢ and their
probabilities evaluated. The method of evaluation consists in identifying the regions with
regions defined in terms of the order statistics of a sample of # from the uniform distribu-
tion on the interval (0, 1). The result obtained for ¢(z) = F(x) + ¢/n,0 < ¢, integral <=
is used to provide a direct proof of the Kolmogoroff result

Jim P sup (Sa(2) — F(2)) < 2] = 1 —e7*,

while that obtained for ¢(z) = F(z) 4+ t,0 < t < 1, gives the exact c.d.f. of the statistic
sup: (Sa(z) — F(2)).

30. On a Generalization of the Behrens-Fisher Problem. (By Title). Jorn E.
WarsH, Rand Corporation, Santa Monica, California.

Let m + n independent observations be available where it is only known that a specified
m of them are from continuous symmetrical populations with common median p while the
remaining n are from continuous symmetrical populations with common median ». This is
the generalization of the Behrens-Fisher problem investigated; some tests and confidence
intervals for u — » which are valid for the generalized situation are presented. For definite-
ness, suppose that n < m. The procedure used is to subdivide the m observations (common
median u) into n groups of nearly equal size and form the mean of the observations for
each group. Pair the n means with remaining n observations and subtract the value of
each observation from the value of the mean with which it is paired. The resulting n values
represent independent observations from populations with common median x — ». Tests
and confidence intervals for 1 — » are obtained by applying the results of ‘‘Applications
of Some Significance Tests for the Median Which are Valid Under Very General Condi-
tions”’ (Jour. Amer. Stat. Assn., Vol. 44 (1949), pp. 342-55) to these n values. To measure
the “‘information’ lost by using the generalized tests when one actually has two inde-
pendent samples from normal populations, power efficiencies are computed with respect
to: (a) Scheffé’s ““best’’ t-test solution and (b) most powerful solution when ratio of vari-
ances is known. Case (a) yields an upper bound while case (b) furnishes a lower bound
for the actual efficiency.

31. Construction of Partially Balanced Designs with two Accuracies. (By Title).
S. S. SHRIKHANDE, University of North Carolina and Nagpur College, Nagpur,
India.

Various methods of construction of partially balanced designs first introduced by Bose
and Nair (Sankhya, Vol. 4 (1939), pp. 337-373) have been considered. Two of the methods
given are generalisations of a difference theorem given by them. Another method is the
inversion of an unreduced balanced incomplete block design with k = 2. Use has also been
made of the existing balanced incomplete block design in another direction. A number of
designs can also be obtained by methods of finite geometries and especially by omitting a
number of treatments and certain blocks from the complete lattice designs. Use of curves
and surfaces in finite geometries and the use of multifactorial designs given by Plackett
and Burman (Biometrika, Vol. 33 (1946), pp. 305-325) are also indicated.

32. Designs for Two-way Elimination of Heterogeneity. (By Title). S. S.
SHRIKHANDE, University of North Carolina. and Nagpur College, Nagpur,
India.

Use has been made of the existing balanced and some partially balan ced designs for two-
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way elimination of heterogeneity with at most two accuracies. Particular cases of these
designs were given by Youden (Contributions from Boyce Thompson Institute, Vol. 9 (1937),
pp. 317-326) and Bose and Kishen (Science and Culture (1939), pp. 136-137). The method
depends upon interchanging the positions of various treatments in the different columns
(blocks), if necessary, so as to satisfy certain conditions.

33. Designs for Animal Feeding Experiments. (By Title). S. S. SHRIKHANDE,
University of North Carolina and Nagpur College, Nagpur, India.

In animal-feeding experiments change-over designs are generally preferable to continu-
ous feeding experiments. In change-over designs both the direct and carry-over treatment
effects are important. Use of balanced and partially balanced incomplete block designs
toward this end has been considered.

34. A Truncated Sequential Procedure for Interval Estimation, with Applications
to the Poisson and Negative Binomial Distributions. (Preliminary Report).
(By Title). D. MarTIN SanpELIUS, University of Uppsala, Sweden, and Uni-
versity of Washington.

Let z, 1, y2, - - - be a sequence of random variables defined in (0, «), and let n be the
n41l
smallest 1nteger satlsfymg E y: > tx, where ¢ > 0 is a non-random quantity. Define wuy

either as Z yi/z or as the smallest integer exceedmg E yi/x, k = 1,2, . Given the

dlstrlbutlon function F(z, ) of z and, for any ¢, the condltlonal distribution of n with
respect to z, the distribution of u is obtained. The problem is to determine a confidence
interval for @ with confidence coefficient 1 — « on the basis of either an observation on
i , if ux < ¢, or an observation on n, if n < k — 1. The following procedure is proposed:
If u; < t, choose 65 and 6;; according to a rule satisfying Prob (610 < 0 < 611) | ux < t) >
1 — a.If n < k — 1, choose 63 and 6z such that Prob (0,0 <0< 0 |[n <k —1) > 1 — a.
For continuous u; the following cases are discussed: a) # = 0 with probability 1, and n
has, for any ¢, a Poisson distribution with mean t6, b) =z has a Gamma distribution with
mean 6, and the conditional distribution of n» with respect to z is, for any ¢, a Poisson dis-
tribution. Both cases may, for instance, be applied to bacterial counting.

35. A Generalization of the Method of Maximum Likelihood: Estimating a
Mixing Distribution. (Preliminary Report). (By Title). HErBERT RoBBINS, Uni-
versity of North Carolina.

Ict 6 be a vector random variable with distribution function G(6) belonging to some
class &, let = be a vector random variable whose frequency function f(x; 8) depends on 6,
and let g*(z) = [ f(x; 6) dG(8) be the resulting frequency function of z. From a sample
x;, Ta, +-+ it is required to estimate G(0). The genecralized method of maximum likeli-
hood consists in using the estimates G.(8; 21, - -+ , z,) in ® for which IT g*(z:) is a maxi-
murn. Under certain restrictions this method is consistent as n — =.

Any consistent method of estimating the mixing distribution G(8) from the sequence
i1, o2, -+ yields a solution of parametric statistical decision problems in the following
manner: from past values x, , --- , o1 We estimate G(0), and then use the corresponding
Bayes solution of the decision problem to reach our decision for z, , even though the value
9,, which produced z, is different from those which produced z; , - -+ , Z»—1 . In certain cases
of long-term experimentation this approach seems more reasonable than the minimax
method which decides on the course of action appropriate to 6. on the basis of z, only,
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and ignores the information about the prior distribution of # which is contained
inzy, -+, %o,

36. Smallest Average Confidence Sets for the Simultaneous Estimation of k
Normal Means. (By Title). Racau RAas BAEADUR, University of North Carolina.

Let v = (zu, -, Ziny 5+ ; Taa, --+ , Tkni) denote the combined sample point in
samples of sizes n;, nz, --- , m from normal populations =y , @ --- , m , respectively,
w; having mean g, and variance ¢} . Writingu = (u ,p2, - -+ , m), denote the % dimensional
Euclidean space of all points p by R. Given any parameter point (u, ¢), where
o = (61,02, -+, oz), and any set-valued function f(v) defined for all sample points » and
having subsets of R as its values (which satisfies certain measurability hypotheses), let
a(f | u, ¢) = probability of the statement ‘“u ¢ f(v)”’ being false, and 8(f | u, 0) = expected
Lebesgue measure of f(v). We consider the problem of constructing f(v) so as to make both
a and B ‘“‘as small as possible.” One of the results obtained is as follows: Given
P, 0 < p <1, let fpn® = {wEZnlE — w)/LE < &(p) 2% nids/L?), where
Fo=n7'Z0 @i, 88 = ntEP (#i — )45 A = (L, L, -+, i), the l;’s being given positive
constants, and {(p) being determined by P(xZ > ¢(p)-xk-t) = p, where xi , x¥-x are inde-
pendent chi-square variables with k, N — % degrees of freedom (k < N = Z¥ ;). Then
(a) ObViOUS].\/a(f)\O:{(,,) {m, eN\) = pforallpandall¢,0 < ¢ < «, and (b) if f(v) is any other
function such that «(f | u, eA\) < p for all u and all ¢, either (3) f(») and f{’:;(,) (v) differ by
a set of measure zero for almost every v, or (43) sup {8(f | u, c\)} > su);z) {B(M:s oy | 1y €N}
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NEWS AND NOTICES

Readers are invited to submit to the Secrelary of the Institute news items of general interest
Personal Items

Mr. Harry H. Goode, formerly head of the Special Projects Branch, Special
Device Center, Office of Naval Research 1, New York, is now Superviser of the
Aero-Physics Group, Aeronautical Research Center, University of Michigan,
Ann Arbor, Michigan.

Mr. William G. Howard, who was previously employed by the Johns Hopkins
University, Institute for Cooperative Research, is presently employed as Mathe-
matical Statistician in the Air Studies Division of the Library of Congress.

Miss Margaret IXampschaefer has accepted a position as Statistician in the
U. 8. Bureau of Labor Statistics, Minnesota Payroll Project, Minnesota Division
of Employment and Security. She was formerly employed as Junior Mathe-
matician at the Argonne National Laboratory, Naval Reactor Division, Chi-
cago, Illinois.

Dr. Albert Noack has recently been appointed Professor of Actuarial Mathe-
matics at the University of Koeln, Germany.

Second Berkeley Symposium on Mathematical Statistics and Probability

The Sccond Berkeley Symposium will be held at the Statistical Laboratory,
University of California, Berkeley, from July 31 to August 12, 1950, with the



