ERRATA 301

 $v=\frac{x'+x''}{2}$. When we integrate this joint density function with respect to u, we obtain the density function of $v=\frac{x'+x''}{2}$ as given by

$$p(v) = 6\sqrt{2}\phi[\sqrt{2}(v-\theta)]\left[1 + G\left(\frac{\sqrt{2}(v-\theta)}{\sqrt{11}}\right) - 2\int_0^\infty \phi(x)G\left(\frac{3x}{\sqrt{2}} + v - \theta\right) dx\right].$$

The mean and the variance of the distribution of v are given by θ and $\frac{1}{2} + \frac{\sqrt{3}}{4\pi}$ respectively.

It may be remarked that if there is a suspicion that one of the extreme observations in a sample of three does not belong to the normal population under consideration, then the median of the sample is a better estimate than the average of the two closest. The efficiency of the latter compared to that of the former is about 70%, for the variance of the median in this case is given by $1 + \frac{\sqrt{3}}{\pi}$ compared to $\frac{1}{2} + \frac{\sqrt{3}}{4\pi}$ of v, the average of the two closest. The efficiency is here defined as the ratio of the variances for the two estimates.

ERRATA

By W. Feller

Cornell University

The author regrets the following inconsequential, but very disturbing, slips in his paper "On the Kolmogorov-Smirnov limit theorems for empirical distributions" (Annals of Math. Stat., Vol. 19 (1948), pp. 177–189):

- (1) In equation (1.4) on p. 178, the exponent $-\nu^2 z^2$ should be replaced by $-2\nu^2 z^2$. The same copying error occurs in the description of Smirnov's table on p. 279. The proof is correct as it stands.
- (2) In the formulation of the *continuity-theorem* on p. 180 it is claimed that $u_k \to f(t)$ whereas in reality the continuity theorem permits only the conclusion that

(*)
$$\delta \sum_{r=1}^{k} u_r \to \int_0^t f(x) \ dx.$$

This slip in formulation in no way affects the proofs since only (*) is used. (The assertion that the step functions $\{\xi_k\}$ converge pointwise is not based on a

second application of the continuity theorem, but on the obvious fact that(*) implies

$$\delta \sum_{r=1}^k q_r u_r \to \int_0^t q(x) f(x) dx,$$

where the step function $\{q_r\}$ converges uniformly to a continuous monotonic q(x)).

The following corrections apply to the paper, "On the normal approximation to the binomial distribution" (Annals of Math. Stat., Vol. 16, (1945), pp. 319–329).

- (1) Equation (27) gives two variants of an estimate for the error ρ . The second should simply restate the first one in terms of the variable x; in other words, the expression $(p^3 + q^3)$ in the second line of (27) should be replaced by $p^3(1 px/\sigma)^{-3} + q^3(1 + qx/\sigma)^3$.
- (2) The estimate $\rho < \sigma^{-6}/300$ given in (28) is not valid over the entire range for which it is claimed. However, the further theory depends only on the fact that $\rho = O(\sigma^{-4})$, and the estimate $\rho < \sigma^{-6}/30$ is both correct and sufficient for our purposes. (Actually, no changes whatever are required in the proofs, since (28) is used explicitly only for a range where it is correct as stated).
- (3) On p. 324 it is stated that under the conditions of the main theorem (p. 325) $k \ge 4$, $n k \ge 4$, whereas in reality the value 3 can occur in extreme cases. Fortunately, the assertion is not used anywhere in the proof, and the error ρ is negligible in all cases.

Accordingly, no changes are required either in the formulation or the proof of the theorems. I am indebted to Dr. W. Hoeffding for calling my attention to the slips.

(4) The first minus sign in footnote 5 should be an equality sign and the second minus in (70) a plus.

ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Chapel Hill meeting of the Institute, March 17-18, 1950)

1. A Method of Estimating the Parameters of an Autoregressive Time Series. S. G. Ghurye, University of North Carolina.

The general autoregressive process of the second order is defined by the equations

$$x_t = X_t + \eta_t,$$

$$X_t + \alpha_1 X_{t-1} + \alpha_2 X_{t-2} = \epsilon_t,$$

where x_i is the value actually observed at time t, X_t the corresponding theoretical value, ϵ_i the disturbance and η_i the superposed variation. The estimates of α_1 , α_2 given by Yule's method are biased and inconsistent if η_i is not identically zero, the permanent bias being a function of the unknown variance of η_i . The present paper proposes a method of estimation