ASYMPTOTIC PROPERTIES OF THE WALD-WOLFOWITZ TEST
OF RANDOMNESS

By Gorrrriep EMANUEL NOETHER

New York University

1. Summary. The paper investigates certain asymptotic properties of the
test of randomness based on the statistic Ry = D1y ziZiss proposed by Wald
and Wolfowitz. It is shown that the conditions given in the original paper
for asymptotic normality of R, when the null hypothesis of randomness is
true can be weakened considerably. Conditions are given for the consistency
of the test when under the alternative hypothesis consecutive observations
are drawn independently from changing populations with continuous cumulative
distribution functions. In particular a downward (upward) trend and a regular
cyclical movement are considered. For the special case of a regular cyclical
movement of known length the asymptotic relative efficiency of the test based
on ranks with respect to the test based on original observations is found. A simple
condition for the asymptotic normality of R, for ranks under the alternative
hypothesis is given. This asymptotic normality is used to compare the asymptotic
power of the R;-test with that of the Mann T-test in the case of a downward
trend.

2. Introduction. The hypothesis of randomness, i.e., the assumption that the
chance variables X;, ---, X, have the joint cumulative distribution function
(cdf) F(z1, -++, x.) = F(x1) -+ F(z.) where F(z) may be any cdf, is basic in
many statistical problems. Several tests of randomness designed to detect
changes in the underlying population have been suggested, however mostly on
intuitive grounds. Very seldom has the actual performance of a test with respect
to a given class of alternatives been investigated. It is the intention of this
paper to carry out such an investigation for the particular test based on the
statistic

R, = Z; TiZith Ty = Zj,
proposed by Wald and Wolfowitz [1]. It is suggested in [1] that this test is
suitable if the alternative to randomness is the existence of a trend or a regular
cyclical movement. Both these cases will be treated.

Let a1, ---, a. be observations on the chance variables X;, ---, X, and
assume that the hypothesis of randomness is true. (Henceforth this hypothesis
will be denoted by H, while the hypothesis that an alternative to randomness is
true will be denoted by H,.) Restricting then X;, --- , X, to the subpopulation

of permutations of a;, ---, a., any one of the n! possible permutations is
equally likely, and the distribution of R4 in this subpopulation can be found. If
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the level of signifitance « is chosen in such a way that « = m/n! where m is a
positive integer, the test is performed by selecting m of the n! possible values of
R»x and rejecting Hy when the actually obtained value of R, is one of these m
values. The particular choice of the critical values should be such as to maximize
the power of the test with respect to the class of alternatives under consideration.

Denote the expected value and variance of R; in the subpopulation of equally
likely permutations of n observations a,, ---, a, by E°'R, and V°Ry, respec-
tively. Then it is shown in [1] that if & is prime to n

(2.1) ERy = — (4] — 4
and
V'R = —— (A2 — A
@2 + m (A4 — 443 4, + 44, 4, + 43 — 24))
— e i — 40,

where A, = a1 + -+ 4+ a%, (r = 1,2, 3, 4). Actually (2.1) and (2.2) are valid
as soon as n > 2h.

Let R;. = (Rx» — E°R:)/\/V°R,, . Then it is also shown in [1] that if h is prime
to n, R} is asymptotlcally normally distributed with mean 0 and variance 1

provided the a;, ( = 1, , 1), satisfy condition W:
oy Z (ai - a)
e = 0(1))1 (T = 3: 4) . ')y

[ Z(aa—a)]

=]
— -1
whered = n' D L, a;.

It is easily seen that condition W is satisfied when the original observations are
replaced by ranks. When the a,, -- -, a, are independent observations on the
same chance variable X, condition W is satisfied with probability 1 provided X
has positive variance and finite moments of all orders. It is interesting to compare
this condition for asymptotic normality of R, in the population of permutations
of observations on the chance variable X with the condition for asymptotic
normality of R, under random sampling. For this case Hoeffding and Robbins
[3] have shown that it is sufficient to assume that X has a finite absolute moment
of order 3. Thus it is desirable to weaken condition W. This will be done in
Section 3.

In further sections the consistency and efficiency of the test based on R; will

! The symbol O, as well as the symbols 0 and ~ to be used later, have their usual meaning.
See, for example, Cramér [2], p. 122.
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be examined assuming that under the alternative hypothesis observations,
though still independent, are drawn from changing populations. Throughout the
paper the circularly defined statistic Ry is used. However, if with probability 1

Tricwri + <o+ + zazn = o(Ry),

it is seen that asymptotically the test based on the non-circular

n—h
Rh = Z TiTith
=1
has the same properties as that based on R; . We find
_ n - h 2 _
EoRh = n(n—__l)" (Al A!)y
_ n—h 2 2(n — 2h) 24 42
VOR}; = m (A2 A4) '+' n(n — 1)(n — 2) (AlAz A2 2A1A3 + 2A4)

m—h—=1D0n—5h—2) + 2(h —
nn — 1)(n — 2)(n — 3)

+ D (A} — 6434, + 84:4; + 345 — 64

(n"h)2 2 2
*m(Al*Az).

3. Asymptotic normality of R, under randomization. Let the set of chance
variables X;, -+, X, be defined on the n! equally likely permutations of n
numbers ¥, = (a;, - - - a»). Then we have

TrEOREM 1: The distribution of R} tends to the normal distribution with mean 0
and variance 1 as n — o provided

> (@ —a)
@1 = = o[n® ™", (r =34, ),

[ @-a]"

=1

whered = n* Z; a;.

ReMark: The set A, need not be a subset of N, .

The proof of this theorem will be omitted, since it is very similar to the proof
of another theorem by the author [4].

THEOREM 2: If the a; yaz, - - - are independent observations on a chance variable
X having positive variance and a finite absolute moment of order 4 + 6, 6 > 0,
condition (3.1) is satisfied unless possibly an event of probability 0 has occurred.

The proof of this theorem will be based on Markoff’s method for proving the
central limit theorem in the Liapounoff form.” Thus we shall show that there
exists a sequence of sequences B, = (bu, -, bas) such that unless possibly
an event of probability 0 has occured, (i) there exists an index n’ (depending

t See, for example, Uspensky [5], pp. 388-95.
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on the given sequence) such that for n > n/, A, = B, , and (ii) the sequences B,
satisfy condition (3.1) expressed in terms of the b,;, (i = 1, -+, n).

It is no restriction to assume that EX = 0, since the addition of one and the
same constant to every a; does not change (3.1). Let

1 @+5/2)
N =Nn) =n ,

and definefori =1, --- ,n
b,..' = a;, Cni = O, ifai _<_ N(n),
=0, =a;, ifa;>N(n),

so that a; = b,; + ¢.:. Then b,; and c¢.; can be considered as observations on
chance variables Y, and Z, , respectively, where

Y, =X, Z, = 0, if X < N(n),

= 0, = X, if X > N(n).
Further let p, = P{Z, = X}, a,(U) = EU’, 8, (U) = E|U | where U =X,
Ya, Z. and r is positive integral, if these moments exist, 8145 = E| X |'*,

and finally, let F(x) be the cdf of X.

In order to prove (i) consider the infinitely dimensional sample space @ with the
generic pointw = w(a;, a2, ---) andlet E, = {w|a. > N(n)}, (n = 1, 2,--).
Then E, has probability measure p, . We shall show that > _a_; p, converges. Since

© -~ oo
s = [ a1t ar = v [ [T are + [ Car | = v,

we find

1
< 440 4+5 = 445 4 4 2) -
Pn < Buy N Bat DTG

Now (4 + 6)/(4 + 6/2) > 1 and the infinite sum converges. It follows that the
set E of points which belong to infinitely many sets E, has probability measure 0.
Thus for every point w e @ except those in a set of measure 0 there exists an
index n, (depending on w) such that for n > n,
3.2) an, < N(n).
Further, since n, is finite and N(n) — o, it follows that for these points there
exists a second index n., > 7, such that in addition to (3.2) a, < N(n.), (n =
1, ---, n,). Thus except on a set of measure 0 the sequences B, are identical
with the sequences ¥, for n > n., . This proves (i).

In proving (ii) let B,, = Z,’;l bhi, (n,r = 1,2, ---). We first note that under
the assumptions of the theorem n ™' 4, — a,(X) for r = 1, 2, 3, 4 except on a set
of measure 0. Thus except on a set of measure 0

a=n"4=0(), A,=09n),> As=0®m), Ai=0@),

3 A function f(n) is said to be of order Q(n*), k real, if f(n) = O(n*) and lim inf
| f(n)/n* | > 0. "
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and therefore by the argument used in proving (i) again except on a set of
measure 0
bp = 0By = 0(1), Bm=2®), Bus=0@n), Bu=O0@).
It follows that in order to prove (ii) it is sufficient to show that
(3.3) B., = o[n" ™", (r=5,6, ),

except on a set of measure 0.
Now forr > 5

ar(¥2) < B(Y2) < N7HB(Y2) < N'78(X),

and therefore

ar(Y,) = O(N™™) = Q[p0/¢+m)
It follows that

EB,, = na,(Y,) = O[n(f+5/2)l(4+5/2)]
and

var Bnr = n var an = n[az,-(Y,.) _ af(Y”)] — O[n(2r+a/2)/(4+5/2)],
so that
0(Bny) = O[plHio/atimy

Assume now that for some r» > 5 (3.3) is not satisfied on a set F, having
measure ¢, > € > 0. We shall show that this assumption leads to a contradiction,
and that therefore (3.3) is true.

Choose ¢ such that
(34) 1/2 < e < (16 4 1d)/(32 + 49).

Since r > 5, (3.4) can always be satisfied. Then the infinite sum D e (1/0%)
converges, and a positive constant d can be found in such a way that
_1ls1
p= @ =i nre
If we then write the Tchebysheff inequality
P{| Bs — EB,, | > dn’e(B..)} < 1/d'n”,

it is seen that except on a set having at most measure p

+48/2)/(4+46/2 3/4)[(4+6/2,
B,, = O{max[n(r /)/(+/), nen(f+/)/(+/)]}.

Now forr > 5
(r+6/2)/(4 +8/2) <r/4
and by (3.4)
e+ (r+8/4)/(4 + 8/2) = e+ r/4 + (5/4 — 16/8)/(4 + 9/2)
< r/4 + (16 + 28)/(32 + 43) = (r + 2)/4,



236 GOTTFRIED E, NOETHER

so that the measure of the set F, is not even equal to e. This contradicts our
assumption, thus proving Theorem 2.

4. Consistency. To prove consistency of tests based on permutations of
observations a;, ---, a, the following procedure can be applied. Let the test
statistic be S, = S(z1, - - - , #,) and denote by E» = E°(ay, - - -, @,) and Vo =
Va;, - - -, a,) the expected value and variance of S, under the assumption that
the set of random variables X;, -+, X, is restricted to the subpopulation
congsisting of the n! equally likely permutations of the observations. Assume
that for the alternatives under consideration large values of S, are critical.
Then we reject the null hypothesis whenever (S, — E%)/A/V% > k where & is
some positive constant depending on the limiting distribution of S, under the
assumption of equally likely permutations and the level of significance. Thus
in order to prove consistency we have to show that

. Sn - Egz
(4.1) lim P —\/———?/.—o— >k|Hyp = 1.
(4.1) will be satisfied if for some ¢ > 0
(S, — ES
Iim P W>6IH1}=1.

n—0

Thus we shall have proved consistency, if we can show that when H, is true,
E%/A/nV? converges in probability to 0 and there exists some ¢ > 0 such that
lim pew P{Sa/A/nVS > €| Hi} = 1.

Applying this method to our problem and noting that a corresponding pro-
cedure could have been used in the case when small values of S, are critical,
we obtain

THEOREM 3: The lesi based on Ry is consislent with respect to alternatives for
which

E'R;,

e
(4.2) Vg 70
and there exists some € > 0 such that
. Ry

where E'Ry and V'R are given by (2.1) and (2.2), respectively.

In what follows it will always be assumed that under the alternative hypothesis
observations are independent from chance variables X, with continuous cdf’s
F.(z), m = 1,2, ---). We shall often have the opportunity to make use of the
fact that the test is not changed if one and the same constant is subtracted
from every observation. This will be helpful in reducing our problem to one for
which (4.2) is true.

Let a; be the rank of the cbservation x; on the chance variable X;, z =
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1, ---, n). Then it is no restriction to assume that these ranks take the special
form

so that 4; = 0, 4y = &’ — Dn = Q®°) and

(4.4) V'R ~ ;ll A} ~ 2’ = @)

and therefore (4.2) is always satisfied.

Before we can find conditions under which (4.3) is satisfied, we have to in-
vestigate the expected value and variance of Rx when H; is true. For this purpose
write a; = Z?==1 Yii (7’ =1, n))

@5) e g LR
= 1/2 if z; < z;,

Then if P{X: < X;} = pij, G,j =1, -+, n), we find
Ey;; = 4pij — 3(1 — psj)) = psj — 3 = «;,  (say).

Further,
(4.6) R, = g g ?;1 Yii Yith k5 Yntik = Yiko
Therefore
@7 ER.|H) = Z ; ; eijeni + O
and

var Ry = E 21; .,Z; Yii Yirh ik Yap Yathy — B Z YiiYirh i B Z Yab Yaih v
@8 = 'Z]k: ‘; (ByiiYirn s Yas Yashr — EvisYirs s BlasYasn ).

In (4.8) the expression in parentheses is 0 unless one of the Greek indices (1n-
cluding « + %) equals one of the Roman indices. Therefore var (R | H) = O(n).
It then follows from (4.4) that

Ri/\/nV°Ry ~ 11_;13,, 72 12 lim %E(R;.IHI),

and we can state the following corollary.to Theorem 3:
COROLLARY: When using ranks, the test based on Ry is consistent, if under the
alternative hypothesis

n

4.9) Ly > ,; eiieinn = Q(L),

ne =1

where €;; = P{X; < X} —
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Since ¢;; = —ezu, We can write
P3P ; €ij Eithk = }i: 2 2 eileinn — ap) = L, (say),
i 7 T 7>
and the test is consistent if

(4.10) lim = L 0.
4.1. Downward (upward) trend. Assume that for ¢ < j and all &
(4.11) 6; <0
and
(4.12) e < €.

These requirements are equivalent to P{X; < X;} < 1/2.and P{X; < Xi} <
P{X; < Xi} and are satisfied if the alternative to randomness is a downward
trend in the sense that F(x) < Fj(x), (—o < z < o, < j), with at least
one interval of strict inequality.

(4.11) and (4.12) are not sufficient for (4.10) to be true. Thus assume in
addition that there exist a positive integer n’ and a number ¢ < 0 such that
Lu.b. j—izn’ €j = €. Then
lim la L > lim l Z E e;,-(e;+;.,k - 6j+h,k)

e N noow N® k=1 i<k—h—n’
i>k—h+n’

22e21im?-%I;l(k—h—n’)(n—k+h—n’+1)=262(%—%)>0,

and the test is consistent.

The case of an upward trend can be treated in exactly the same way. The
test is consistent with respect to alternatives for which for 7 < jand all , ¢;; > 0,
er > €, and glb. j_;> . €; = ¢ where this time ¢ > 0.

Another test of randomness, the so-called T-test, has been proposed by
Mann [6] with exactly this alternative of a downward (upward) trend in mind.
This T-test is also consistent provided certain general conditions are satisfied.
Thus the question arises which of the two tests should be chosen if a downward
(upward) trend is feared. This question will be considered in Section 7.

4.2. Cyclical movement. Let the class of alternatives be specified by

(4-13) €lgta,mg+8 = €af, (ofv g=1,---, g > 1; l: m = 0: 1 - '):

in other words, assume that the statistic Rs is used to test for randomness while
under the alternative hypothesis there exists a regular cyclical movement with a
period of length g. It is sufficient to consider the case b < g.

If (4.13) is true,

n

(4.14) .;1 €5 €i4hk = n’ 2:1 €. €ih,. T 0(n2) = nsﬂ + O(nz)»

1jk=
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where
1<
(415) €, = — Z €ia
g a=1
and
1 g
(4-16) n = ‘;]‘ Zl €x, €qth,. .

Thus in view of (4.9) the test is consistent if 5 5 0.

If h = g, n reduces to a sum of squares and is therefore > 0 if some e,. # 0.
However it is possible that some or even all e, # 0, (a # 8), and still ¢,. = 0.
If this happens, the test is inconsistent, otherwise it is consistent. If under H,
the populations from which consecutive observations are drawn differ only in
location, the above mentioned exceptional case cannot happen, and the test is
always consistent with respect to this class of alternatives.

If h < g, it is not difficult to construct an example where Z'L=1 €a.€ayn,. #= 0
while D %1 €€, = 0, where ther, are a permutation of the numbers1,-- - , g.
Thus in this case it is not sufficient that some e.. # 0 for the test to be consistent.
Consistency may also depend on the order of the elements of a period.

We may conclude that if ¢ is known, we should always choose h = ¢. If ¢
is not known, we may as well take h = 1.

4.8. Change in location. Turning now to the case when the test is performed
on the basis of the original observations, it will often be appropriate to assume
that under the alternative hypothesis the distribution remains the same except
for a location parameter. We shall consider only the case of a cyclical movement.

Thus let

Fo(z) = F(x — ma) n=12,-.-),

where F(z) is the cdf of a chance variable U having mean 0, and m, is a location
parameter. It will also be assumed that U has the positive variance o* and a
finite fourth moment.

In the cyclical case with period ¢

(4.17) Migta = Ma (@a=1,---,9> l;l‘= 0,1,:---)
We shall find conditions under which our test is consistent with respect to
alternatives of this kind. Obviously we can assume that )_%_, ms = g = 0,
since otherwise we could have subtracted 7 from every observation. Writing
then a, = u, + m,, (n = 1,2, - - ), where u, can be considered as an observation
on the previously defined chance variable U, we find

Ay =2 a = ;u;+0(1),

=1

A= 2 W+ 20 wimi + 2 mi
= =1

=1

= Zuf"i'2Zmagula+a+[g];mi+o(1);

=1 a=1
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where n. is the largest integer such that n.g + @ < n and [n/g] the largest

integer < n/g. A; and A4 are given by similar expressions. Since we assumed that
EU = 0, EU* = ¢ > 0, and EU* < =, we have with probability 1

Dui=ol), Dui=9m), ) ul=0@m), 2 ui = 0(),
=1 =1 i=]1 fu=
so that with the same probability

Ay = o(n), 4, = Q(n), Az = O(n), Ay = O(n).
It follows that with probability 1

ERy = o),  VRy~1 43 = o),

and conditioh.(4.2) of Theorem 3 is satisfied.
Since further

var Ry = fd: var(r;Tis) + 2 21 COV(Zi Tiy by Tigh Tian)

= 2 {{® + m)(o® + mim) — mimia}
(4.18) =1 - 2
+ 2 Zl {mi mi+th(0'2 + mf'+h) — M Msh Migon}

= Z:i {04 + 62(m§ + m§+h + 2m.-m;+2,.)} = O(n)

and therefore except on a set of probability measure 0

1 .1
B R _af R EEIH)

VAVR, A1 ) I
- 2
n

2, 1 5 7
.o+ = Z Me

d a=1
condition (4.3) is satisfied provided lim ne n'E(Rx | Hy) # 0. Now E(Rs | Hy)
= [n/g] D ot MatMain + 0O(1), so that the test is consistent with respect to the
class of alternatives (4.17) for which

9
; (ma - 777,) (ma+h - 7—7_1) # 0,

where 7 = g~' D%, m,. Thus by the same argument as in the case of ranks,
the test is consistent whenever 4 = g, while it may or may not be consistent
fh <g.

6. Limiting distribution of R, under H, in case of ranks. For the remaining
two sections, it is of importance to know conditions under which R, based on
ranks is asymptotically normal under the alternative hypothesis. Using the
methods of moments, it ean be shown that in this case the distribution of
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(R» — ERy)/o(Rs) tends to the normal distribution with mean 0 and variance 1
provided var By, = Q@’).

Generalizing the method used in Section 4 in evaluating the variance of Rs , it is
not difficult to see that E(Ry — ERy*" = 0(n™*), (s = 0, 1, ---). It follows
that if var Ry = @(n°), the odd moments are asymptotically zero. By means of a
more careful analysis, it is also possible to show that E(Ry — ERy)* ~ (2s — 1)
(28 — 3) --- 3(var R,)". This proves our statement.

6. Ranks versus original observations. We have seen in Section 4 that if the
alternative hypothesis is characterized by a regular cyclical movement the test
based on Ry is consistent both for original observations and for ranks, provided
h = g, where g is the length of a cycle. The question arises which test is more
efficient, the one based on original observations or the one based on ranks.,

In trying to answer this question, we shall make use of a procedure due to
Pitman®, which allows us to compare two consistent tests of the hypothesis
that some population parameter 6 has the value ¢° against the alternatives
6 > 6° using critical regions of size a, Sin > Sin{a), (¢ = 1, 2), where Sinis a
statistic having finite variance and Si(e) is an appropriate constant. The
relative efficiency of the second test with respect to the first test is defined as
the ratfo n,/n. where n, is the sample size of the second test required to-achieve
the same power for a given alternative as is achie' ~d by the first test using a
sample of size n, with respect to the same alternativ .

Let E(Sin | 6) = ¥ia(8), var(Sin | 6) = oi(6), and a//,,,(o Vom@) = Hin).
Assuming that the alternative is of the form 6, = ® 4+ k/A/n where k is a
positive constant, Pitman has shown that the asymptotic relative efﬁclency of the
second test with respect to the first test is given by lim e [H 3(n)/H3(n)], pro-
vided there exists a number ¢ > 0 such that for <0<6+ e

(6.1) Vin(0) exists;

as @, — 6 withn — o

Vin(6n)
(6.2) ) —1
and

Oin (on) —1-
(6.3) 7@ 1;

1
(64) lim —% H;(n) = c;, where ¢; is some positive constant;

(6.5) the distribution of [Sis — ¥:x(6)]/0ix(6) tends to the normal distribution
with mean O and variance 1 uniformly in 6.

4 T should like to thank Professor Pitman for his kind permission to quote from his
lectures on non-parametric statistical inference which he delivered at Columbia University
during the spring semester 1948.
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Condition(6.5) can be replaced by the weaker condition

(6.5") the distribution of [S:n — ¥in(0.)]/0:n(6.) tends to the normal distribu-
tion with mean 0 and variance 1 asn — .

In our case, in order to insure consistency, it will be assumed that h =
Consider the parameter

6.6) f = }% é (M — )’

where as before m. is the expected value of the (I + «)th observation, (I =
0,1, ---). We want to find the asymptotic relative efficiency of the test per-
formed on ranks with respect to the test performed on original observations as
6 — 0 withn — oo,

Again it is no restriction to assume that

6.7) = Z M =

Assume further that the chance variable U defined in 4.3 has a finite absolute
moment of order 4 4+ §, § > 0. Then Ry ~ \/nRx/A; with probability 1 and,
if the null hypothesis is true, it follows from Theorem 2 that with the same
probability the statistic

n
\/7_& 2 TiTiyn
e
_
2 @

=1

Qn =

has in the population of permutations of the observed sample values an asymptot-
ically normal distribution with mean 0 and variance 1. This, however, is also
the limiting distribution of @, under random sampling when the null hypothesis
is true, as follows from the results of Hoeffding and Robbins [3]. Thus it will be
sufficient to find the asymptotic relative efficiency of the Rj-test for ranks with
respect to the Qx-test. In doing this, it will also be assumed that U has a con-
tinuous density function f(z) = F’(x), and, in order to simplify notation, that
there are nh observations instead of n.
In ﬁnding Hq(nh), let Za,j = Taj = T(j-Dh+ta and Ua,j = Uai = U(Gi—Dh+a

(@a=1,---,h;75=1, ---,n). Then

1 1 <&, 1 && .
—A = - aj - ajf a,
R PIPIE Rl PIPICERRLD)
h n
=i>:{zua,+zmazua,+nm}_m+a
nha=l =1 prl

Further,

a=1 (j=1 =1

h n n
R, = Z {Z Uaj Ua,jt1 T 2Ma Z Uqj + nm‘i}
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so that
1
——— Rh
EQh - E \/nh ~ V nh6 — \l’on(o)-
1 A 2+ 0
- 2
nh
Therefore
’
"I’Qn(o) V N h ( > + 0)2
Also by (4.18)
h
4 2 2
var@ N’nha + 4ne ‘;ma _ ot + 4070
g nh(a® + 6)? (c* + 9)*
which converges to 1 as 8 — 0. It follows that
©638) Ho(nh) = ¥en(®) = Y22,

Conditions (6.1)-(6.5) are easily seen to be satisfied.
Considering now the Rj-test for ranks, we know that (nk)™"’R, has finite
variance. From (4.7) and (4.14)-(4.16) it is found that

(6.9) E[(nh)™* R, |6] ~ \/nhn = \/_h Z <E 5aﬁ> = Yra(6)

B =
and after some computations

(6.10) Von(0) = \/ﬁz[ [ " ) dx].
From (4.4) and (6.10)

Ha(nh) = 12+/7k [ [ : IS0 dx]z.

Conditions (6.1)-(6.4) and (6.5") can be shown to be satisfied.
Thus the asymptotic relative efficiency of the test based on ranks with respect
to the test based on original observations is

(611)  Hao = o [7{*};/?@ dx] = 144 I:cr [: @) de.

As is not difficult to see, this expression is independent of location and scale.
Let the chance variable U have density function

0, z < —1, z>1,
14z
—-1<Lz<
f@) ={1+a’ lsz=sa
—1<a<l,
1—z
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i.e., let-the graph of f(z) be given by the two straight lines connecting the points
(—1, 0) and (1, 0) with the point (a, 1). Then EU = a/3, var U = & (3 + a°),

f fi(z)dz = 2/3, and (6.11) becomes B@B + a’)/27]°. Thus Hzq increases

with | a |. For a = 0, it is equal to 64/81; for | a | = 1, it is equal to (32/27)".
It is equal to 1, for a = /3/8.

This example shows that the asymptotic relative efficiency of the rank test
with respect to the test based on original observations may be <1, =1, or >1,
depending on the density function f(z). Unless f(z) is explicitly given, no state-
ment can be made as to which of the two tests is to be preferred.

We are now in a position to give at least a partial answer to a question raised in
[1]. In concluding their paper, Wald and Wolfowitz note that the problem dealt
with in this section can be posed not only when transforming to ranks, but also
for any transformation carried out by means of a continuous and strictly mono-
tonic function h(x).

Let t = h(z) be such a transformation, satisfying in addition the condition that
Pitman’s procedure remains applicable for the transformed distribution. Corre-
sponding to ¢* and Q we shall use ¢} and Q; . Let h(m.) = pa, b~ Z’.',_l (ta — B)?
= ¢. Then if EQ; ~ ¥q.(6), by (6.8), (6.9), and (6.10)

d'I’QM(o) = dw@m _d_'_’ @
dd  o—o dd dn df|s—o
(6.12) V/nh 1

- }2 [[:fz(x) d:!:]2 = Hq,(nh),

RERINTOY
where g(¢) is the inverse of k(x). Therefore by (6.8) and (6.12)
{, [: 1@ dx}4
oo [ 7100070 atf

and the asymptotic relative efficiency does not merely depend on h(z), the
operator defining the transformation, but also very essentially on the underlying
distribution f(z).

HQ:Q =

7. Comparison of the R,- and 7T'-tests. The T-test by Mann [6] designed to
test for randomness against a downward trend is based on the statistic

T=;§i(yﬁ+%) = Z:;.y.-,-+%n(n—l),

where y,; is defined by (4.5). Making the same assumptions as in 4.1, Mann
shows that under the null hypothesis 7' has a limiting normal distribution with
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mean in(n — 1) and variance 75(2n° 4+ 3n® — 5n), while under the alternative
hypothesis

(7.1) ET = in(n — 1)(2¢a + 1),
where {, is defined by n(n — 1) = D i D i €5 < 0.
Let
Sn = [T — in(n — D]

nd 12

When H, is true, S. is asymptotically normal with mean 0 and variance 1. If
1~ " . ) .
we then put ¢(\) = \/—Er f)‘ e dz, a critical region for testing H, is given by

S. < —X\, where X is determined in such a way that ¢(\) = «, the level of

significance.
When H, is true, we find from (7.1)

E(Sn I fn) ~ 3'\/7_"' $n .

By paralleling the proof of asymptotic normality of R under H, given in Section
5, it can be shown that (S, — ES,)/o(S,) is asymptotically normal with mean 0
and variance 1 provided ¢(S,) = @(1). This is essentially the result obtained
already by Hoeffding [7]. Thus the asymptotic power of the test based on S,
is given by

a2 P(s. < -\ ~ ¢ (AE2VRE)

converging to 1, provided lim,, /7 {» = — . Thisis the condition for consist-
ency given by Mann.

We may ask for the asymptotic power of the S,-test as {, — 0 with n — o,
More exactly, instead of considering a certain alternative e;; = k;;, where the
k;; are given constants, consider the alternative (changing with =)

k.','
(73) €5 = '\/;L .

If thenasn — «

ZZ ki — k

n(n b 1) T >4,
and
o(S,) — 1,

it follows from (7.2) that the asymptotic power of the S,-test, and therefore of
the T-test, for alternatives (7.3) is equal to

é(\ + 3k).
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Now consider the same situation when the statistic R is used instead of T.
We know that when H, is true

’ 12

Rn = 1_'1,5_/éRh’

where R} is given by (4.6), is asymptotically normal with mean 0 and variance 1.
1
Thus in this case the critical region is given by Ry, > \. If we set&, = ;321']7;6;' F€ith ks

we find
E(R% | &) ~ 12V/nka
and asymptotically the power of the Ry-test is

, N — 124/n &,
(7.4) P{R. > \} ~ ¢ <—7§$§>,

provided o(R%) = (1). Thus the test is consistent if lima—,, \/7ts = ». How-
ever, for the alternative (7.3), (7.4) tends to ¢(\) = «, provided that as n —

o(Ry) — 1.

Thus the Ry-test is ineffective with respect to the alternative (7.3) in contrast
to the T-test. This means that for this alternative the asymptotic relative
efficiency of the Ry-test with respect to the T-test is 0.
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