MINIMAX ESTIMATES OF THE MEAN OF A NORMAL DISTRIBUTION
WITH KNOWN VARIANCE

By J. WorLrowirz!

Columbia University

Summary. It is proved that the classical estimation procedures for the mean
of a normal distribution with known variance are minimax solutions of properly
formulated problems. A result of Stein and Wald[1] is animmediate consequence.
Other such optimum properties follow. Sequential and non-sequential problems
can be treated in this manner. Interval and point estimation are discussed.

1. Sequential estimation by an interval of given length I. In this section we
shall consider the problem of sequentially estimating the mean of a normal dis-
tribution with known variance by an interval of fixed length I. Without loss of
generality we shall take the known variance to be unity. Such a sequential estima-
tion procedure, which we shall designate generically by G, is a rule which says a)
when to terminate taking random, independent observations on the normal
chance variable with unknown mean {(— o < § < «) and variance 1, and
when this termination is to occur after the observations z,, -, #, have been
obtained, gives b) the center of the estimating interval of length ! as a function
ofzy, -+, x, . Let (%, G) be the probability under G that the estimating interval
will contain £, and let n(£, G) be the expected number of observations when ¢ is
the mean and @ is the estimation procedure (It is assumed that G is such
that a(¢, @) and n(¢, G) exist for all £).

Define

Q(E’ G) =1- a(g: G)’
and for fixedc > 0
(1.1) W G) = q§ G) + en(g, G).

Let C (N, 1) (I > 0, N a positive integer) be the classical non-sequential estima-
tion procedure where one takes the fixed number N of observations, and estimates

the mean by the interval <5: - %, z+ £> , Where Z is the sample mean. For p

such that 0 < p < 1, let C (p, N, l) be the following estimation procedure: A
chance experiment with two outcomes, N and N + 1, of respective probabilities
p and 1 — p, is performed. One then proceeds according to C(z, l), where 7(= N,
N + 1) is the outcome of the experiment. Finally define

1,
M(y) = \72——;[/ e 4z
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Let us assume for a moment that the unknown £ is itself a chance variable,
normally distributed with mean zero and variance ¢°, and let us obtain a pro-
cedure G which minimizes

1 © —q2
(12) Ef{q¢t, )+ cnE @)} = N2 f_w {¢(y, @) + en(y, @} exp [gyz] dy.

Let 71, - -+ , Tm be m independent observations on a normal chance variable
with mean ¢ and variance 1. Let

m

in

m

The a posteriori distribution of £, given x;, -+, Zn, is eagily verified (or see
[1], egs. (19) and (20)) to be normal with mean

(13) z [1 + m%z]_l

and variance
—1
(1.4) [m + ;12] .

Thus if we stop after m observations the best procedure from the point of view
of minimizing (1.2) is to put the center of the estimating interval of length [ at
the point (1.3). The conditional expected value of ¢(£) is then

(1.5) Q(xl,"',xmlf’z)=2M<§l/‘/m+;.z!>'

Thus Q(x;, -+ , Zn) is a function only of m and ¢°. Define

(1.6)  R(m, o) = 2M<§l /‘/m + ;1§> - 2M<§l ,‘/m +1+4 0—12>

We note that R(m, ¢°) is, for fixed o, a decreasing function of m. We conclude
that a best decision as to whether or not to take another observation must be
based on the value of R(m, ¢°). If R(m, ") > ¢ take another observation; if
R(m, ¢") < ¢ do not take another observation; if R(m, o2 = ¢ take either action
at pleasure. Hence, if ¢ is such that R(N, ¢*) < ¢ < R(N — 1, ¢°), a best pro-
cedure from the point of view of minimizing (1.2) is to take exactly N obser-
vations. This integer N is a function of ¢ and o°, thus: N(c, ¢°). In the next
paragraph we shall show that N(c, ") can be defined for every positive ¢ and ¢°.
It is clearly a function which takes at most two values. We shall denote by G(c%)
the estimation procedure described above which minimizes (1.2). Tt consists of
taking the fixed number N(c, ¢”) of observations and putting the center of the
estimating interval of length [ at the point (1.3). Where N(c, ¢*) is double-valued
we may take either value at pleasure. We verify that the value of (1.2) is the
same for either choice.
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We now verify that N(c, ¢°) can be defined for all positive ¢ and ¢°. We hav.
remarked earlier that R(m, ¢°) is, for fixed ¢°, a monotonically decreasing func-
tion of m. We note that

lim R(m, ¢®) = 0.
m=00

When ¢ > R(0, ¢°) we take no observations whatever and take Z = 0. When
¢ = R(0, ¢*) we take zero or one observation at pleasure.
Without difficulty we compute

WE GG6)) = W o®) = cN + M(\/Nél [1 + Z%Ta] - \/—%az)

! 1 _§
+M (\/IT’ 2 [1 + N02:| + VN az)
where for typographical simplicity we have written N for N(c, ¢°). For fixed ¢ and

o* the minimum of W (¢, o*) occurs at £ = 0. Also W(0, ¢°) is a monotonically
increasing function of ¢*. If N(c, ) > 0 then, as ¢* — o it approaches the limit

¢N(c,») + 2M(§l VN, m)),
which is the constant value of
W, C(N(c, ), D).

We therefore conclude that C(N(c, =), ) is a minimax estimating procedure of
type G, ie.,
W(Er C(N(C, 00), l)) = inf Slflp W(E; G)
<]

for any ¢ > 0. (The case N(c, ©) = 0 may be verified separately. We define
¥ = 0 for C(0, 1)).

Conversely, let Ny be a given non-negative integer. Then C(N, , I) is a minimax
estimating procedure G for all W (¢, G) for which c¢ satisfies

RB(Ny, ») < ¢ < R(No — 1, »).

(We define R(—1, ©) = «.) Thus we can say: For every ¢ > 0 there exists a
classical estimation procedure C'(N, ) with integral N such that

W, C(N, 1)) = inf sup W, G).

For every integral N we can find at least one ¢ > 0 such that the above equation

holds. A method of finding N, given ¢, and of finding ¢, given N, has been de-

scribed above. (We have taken the liberty of calling C(0, I) a classical procedure.
Let ao be a given number such that

1 — 2M(l

2) <« .
2)_ao<1
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Define 7,0 < po < 1, and a positive integral N, uniquely by

w = (1 - 2(V, N+ a-m(1- m(VFF1,))-

Let
Co = R(Nl)y °°)°

For ¢ = ¢, we verify readily that both C(No , I) and C(No + 1, 1) are minimax
estimating procedures G, so that

W(E C(No, 1)) = W(E, C(No + 1,1)
Po W&, C(No, D)) + (1 — po) W(E, C(No + 1, 1))
(1 — ao) + colpo No + (1 — po)(No + 1)]
= (1 — ) + c[No+ (1 — po)].
Therefore, for any G whatever,
(1 — ao) + @lNo+ 1 — p)] < sup {gt, @ + conlt, G)}

< sup q(t, G) + ¢ SUp n(g, G).

Hence
sup ¢((,G) <1 — &
t

implies
sxtlp n(¢, G) > No + (1 — mo),

a result first proved by Stein and Wald [1].
Also

sup n(, G) < No+ (1 — po)

implies
s:lpq(.E,G) >1—a,

a result also proved in [1].

2. A sequential upper bound for the mean. The fact that in the last section !
was a constant made matters simpler, as we see when we begin to consider the
problem of a sequential upper bound for £(— © < £ < ). This of course means
that we wish to use as estimating interval the interval (— o, L (z;, - -, Zn))
where L is a function of the observationsz,, --- , ., and n (a chance variable)
is the number of observations before the process of taking observations is termi-
nated. What is wanted now is a suitable definition of the “length” of this in-



222 J. WOLFOWITZ

terval. Also we shall admit the possibility that it might be in some sense advan-
tageous to have intervals of varying length; this poses the problem of optimum
choice of the function L(x;, -« -, z,).

As before, let £ be the mean of a normal distribution with unit variance. Let
T be the generic estimation procedure which consists of a rule for terminating the
taking of observations, and of a function Lz(z;, - -- , x,) which is used to esti-
mate £ by the interval (— «, Ly). Define

q¢, T) = P{Lr < ¢},
AE T) = E(Lr — £,
and
2.1) WE T) =g T) + kA T) + en(g, 1),

where ¢ and k are positive constants. (We admit only such T for which the quan-
tities g, A, and n are defined for all real £.) As before, let us temporarily assume
that £ is normally distributed with mean zero and variance ¢°, and set ourselves
the task of minimizing

1 00
—(72/202) — %* 2
©22) T Lo Wy, T) e dy = W*(T, o

with respect to T'. In the next paragraph we digress for a moment to derive a
needed elementary inequality.
Let us prove that, if h, h;, and h, are non-negative, and

(2.3) K =phi+ (1 —p)h,
where 0 < p < 1, then
(24) M®) < pMMh) + (1 — p) M(hs).

Hold & and p fixed. The desired result is obviously true when h;= hs = h. Let
h1 and he vary, subject to (2.3). Then

dhy _ _ —phy
Also
paM (hy) —DP !
= e
dhl ‘ ‘\/2_1;
and
aM(hy) dM (he) dh, ph —n?

=p) —5° =0-p 5 dhy = /2rh

Thus the derivative of the right member of (2.4) with respect to h, is 0 when
v hy= h, positive when h, > h, and negative when h, < k. From this we get (2.4).
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Let T be any estimation procedure and Lr(x,, --- , ,) its associated func-
tion. Write

-1
lr(@, *++ ,@n) = Lo(z1, -~ , Tn) —f[l +n%2] .

Ifn =mandz, -, z,is the sample obtained, we have that the conditional
expected value of W*(T, ¢°) is

(2.5) M(lr(xl, e Tm) A/ m ;12> + om + kE(Up + lr(zy, -+ 2a))?,

where U, is a normally distributed chance variable with mean zero and variance

1
(m 4 ;2>—1. The last term in (2.5) is therefore

k [(m + 6—12>—1 + Uz, -+ - ,x,,.)].

This is an even function of Ir , while the first term of (2.5) is a monotonically de-
creasing function of I . Thus (2.5) and hence W*(T, ¢°) will be minimized by
taking Ir non-negative. Now take the expected value of (2.5) over the set of
samples where n = m. Application of the result of the preceding paragraph to
the finite sums which approximate the integral gives the result that W*(T, o°) is
minimized when I7(2;, - -+ , Z.) is a function only of m. Hence we may restrict
ourselves to consideration of procedures T for which (2.5) takes the value

@6 Mg/ m+ Jixtm) +om+k [(m+ 2) + wmr].

For any such procedure T, since k and ¢ are fixed positive numbers (and o° is
held fixed for the present), the expression (2.6) takes its minimum for some
value of m. Thus, in our quest for a procedure T which will minimize W*(T, o%)
we may restrict ourselves to procedures of fized sample size. This fixed sample
size and the (constant) value of I are functions of %, ¢, and o”. For fixed m,

M(1/m + 4 z°) + k(@

has an absolute minimum at I, , say, since it is a continuous function of #*(’ > 0)
which approaches o« with I’. The case m = 0 must be considered. (In this event
Z = 0.) Now consider the sequence

oy ) s f(mr ) o)

form = 0, 1, 2, - - - ad inf. This sequence condenses only at «. Hence there
exists a value N(k, ¢, o°) of m for which the elements of this sequence have a
minimum value. We may choose N(k, ¢, ¢°) so that lim,2_e N(%, ¢, ¢°) exists.
(We verify easily that this is always possible.) Designate this limit by N (%, ¢, ),
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and the associated by U(k, ¢, ). The I associated with N(k, ¢, o) will be desig-
nated by I(k, ¢, ¢°). Thus a best procedure for minimizing W*(T, ¢°) is to take
the fixed number N(k, ¢, o) observations, and to use, as upper bound for £, the
quantity

- 1 -
X [1 + GTW] + l(k, 0,0'2).

We see readily that
Uk, ¢, ©) = lim Uk, c, ¥
and that
M(‘\/N(’C,C, ©) Uk, ¢, ®)) = l’lm M(,‘/N(k, ¢, o) + ;12 Uk, c, 02)> .
Let T (¢°) be the procedure described above which is a best procedure T in the

sense of minimizing W*(T, ¢°) when ¢’ is the variance of .
We now compute W (¢, T'(s*)) and obtain

W, T(”) =cN + k& [ZI—:-N%')’ 4 ( +§ )z]

(T [t - )

where for brevity we have written N and I for N(k, ¢, ¢°) and I(k, ¢, o*). Let
1+ N¢*
l+£Na'2=x’ BV =N + e

@27

I —
Then
(28) = N k| gt ]+ MVE + d),

w (VN+e¢ - 2 2
(2.9) i 2kx — '——\/—2—;*9’(1)[—“(\/17-{-6) z'}].
The second term above is always of the same sign and the exponential decreases
as | z | increases. Thus W /dx= 0 has the unique positive root z*. Put z* for
z in W (in 2.8) and call the result W*. W is a continuous function of z and ap-
proaches « as |z | — o. Since the root z* is unique it follows that W* is the
minimum value of W with respect to z. Now N(k, ¢, o*) is constant for ¢* suffi-
ciently large. Hence, for such ¢*, we have

W* (\/:%’;i e)a + 2kz* d;: d;: (\/\—/i' € exp [— 5{(\/__—}-5)2 *z}l
(2.10) ~ m exp [-3{(VN + e)’ z*}]
—2k

“ N+ Voo ["7{(\/_+ )’ z*'}]
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since z* is the root of W /dz = 0. Also e is positive and, for o* sufficiently large,
approaches zero monotonically as ¢* approaches «. For ¢ > 0 we have that
aW*/de < 0, since z* > 0. We conclude: For o° sufficiently large,

mein W, T(e)
increases monotonically with o* and approaches

N +k [% + {xu(k)}’] + M(V/Nzx(®)),

where N is short for N(k, ¢, «) and zx(k) is the unique positive root of the equa-
tion in z

2k = %//—-_Zr exp [—3Nz".
Going back to the definition of I(k, ¢, ) we see that the latter satisfies the equa-
tion in I:
Z—l {M(\/N1) + &’} = 0.
Hence
zx(k) = Uk, ¢, o).

Thus the classical estimation procedure Co where one takes the fixed number
N (k, ¢, ©) of observations and uses as upper bound for the mean £ + I(k, ¢, ©)
is a minimax procedure T, i.e.,

W, Co) = inf sup W D).
T

For fixed N, z~(k) decreases monotonically from + « to 0 as k increases from
0 to + «. Hence, for given positive integral No and I* > 0, there is a unique
positive value ko such that zx,(ko) = I*. Consider the expression

@1)  Bm) = M(/m n(k0) + om + ko [ + {x,,(ko)}z],

1
m
where m is a positive, continuous variable. We have

o) ooy im0 Lyt ) + halzaliT)

M (\/m zn(ko)) )

om

(2.12)
+

The third term of the right member is identically zero because

(2.13) ko Zm (ko) = %_g—%exp { —imlza(ka)]’}.
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Further we have

d?B(m) _ 2ky 4 m3zm (ko) —ma2, (ko)
dm’ 22 °

=W T dm
_ g]&) _ kod{m_l(xm(ko))2}
md dm ’

(2.14)

For typographic simplicity we shall use y for (ko) in the computations of the
next few lines. From (2.13) we obtain

log 2k + logy = —log V/2r + 3 logm —3 m v,
1dy 1 ¢ dy
ydm 2m 2 " am’
dy _ y(l — my’)
dm  2m(l + my?)

Hence
d*B(m) - - o dy
e om ™ + kom ™ y* — 2kom Iyt—i_r—n
_ -3 -2 2 oy (1 — my’)
(2.15) = 2kem™" + kem ™" y g R
_ -3 2y4ko
= 2kom  + m———(l ) > 0.

Since ¢ > 0, we have
lim B(m) = lim B(m) = + .
m=0 M=00

Hence there exists a value of m for which B(m) takes its minimum value. If in
d B (m)/dm we put m = N, and set the resulting expression equal to zero, we
obtain an equation in ¢ whose unique solution ¢, if it is positive, assures us that,
when ¢= ¢, and k = ko, B (m) takesits minimum at m = N, . A simple compu-
tation gives
k * 1 *2
(2.16) o = 2o 4 Pexp {—3NolT)

N 0 2'\/27I'N 0
Actually we are interested in considering B (m) only for positive integral values
of m. We see readily that the minimum of B (m) occurs then at m = Ny, when
¢ is such that ‘
(217) C1 (NO ) kO) S c ._<_ Ce (NO ) ko),
with ¢; and ¢, roots of the following equations in c:

B (No) = B (No+ 1),

B (No) = B (No — 1).

> 0.

(If No = 1, then ¢, = =.)
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Let Cy (No, I*) be the classical (non-sequential) procedure where one takes
N, observations and uses Z + I* as upper bound for the mean. Choose k = ko and
¢ such that (2.17) is satisfied. Then

1
W& Ve, 19) = oo+ ka , + %) + MV )

identically in £. Co(N, , I*) is a procedure T such that
(2.18) W, Co) = inf sup W, T).
T

Whenever ¢ and k are given, the N and [ of the minimax solution may
be obtained as follows: First we obtain an integer N such that

alV, k) < ¢ < (N, k).

Knowing N and k we can then solve for [.

The results of this section may be summarized as follows: For every positive
¢ and k there exists a classical estimation procedure Co(N, I) with positive integral
N and I > 0 such that (2.18) holds. Conversely, for every such pair (¥, [) there
exists a positive pair (c, k) so that (2.18) holds. A method of finding one member
of the pair of couples (¢, k) and (N, I) when the other is given, has been indicated
above.

Let T; be any procedure for giving an upper bound for £. We shall say that
T, is optimum if for any other procedure T, such that

sup q(& T) < sup q(§ Tv),
m:p \E, T.) < Slelp AE T,

we have
sup n(, Ty > sup n(§, Th).

It is easy to prove that the classical procedure Co with any positive I and positive
integral N is optimum by using the results of the last paragraph. Forlet 1 — o =
M (I1+/N) and let k and ¢ be the corresponding parameters. We have then

sup g(, T2) + k sup A&, Ti) + ¢ sup n(E, T) > sup g, T2)
1
+ENE T2 + on6, T} = (1 — o) + k<ﬁ + lz) 4 oN.
Since sup (¢, T2) < (1 — @) and sup A(§ T2) < 1/N + I, we must have
sup n(t, Ty) > N,
which is the desired result.

In a general unprecise way we may say that an estimation procedure is the
better the smaller the three quantities

B(T) = sup a6, T),  AT) = supAE, 1), Bu(T) = sup n(, T).
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We can now assert the following: No sequential procedure T' can be superior to
the classical fixed sample procedure C in the sense that

B:(T) < B«(C) fori =1,2,3

and the inequality sign holds for at least one <.
In concluding this section we may remark that the case a < %, ie.,1<0,

may be handled in the same manner as above except that we use M(—1 \/m)
in place of M(l \/m).

3. Miscellaneous results; point estimation. Without going into the neces-
sarily involved details, we content ourselves with pointing out that the problem
of estimating sequentially the mean of a normal distribution by a finite interval
of length not specified in advance, can be solved in similar fashion. As before
let £ be the unknown mean of a normal distribution with unit variance, where £
may be any real value. We want to estimate by an interval

(Ll(xl » "0, .’E,,), L2(xl y " :C,.))

Let ¢, k;, and k. be positive constants and consider the problem of minimizing
the supremum with respect to £ of

1 —Pl{L <t<L|G} + ent Q)
+ ki E[(Ly — £)*| G'] + kE[(L: — §°| G',

where G" is the generic designation of the estimation procedure. As before, employ
an a priori normal distribution of ¢ with mean zero and variance ¢°, and let
o’ — . A fixed sample size procedure will be a minimax solution. It will possess
optimum properties similar to those described in the preceding sections. The
problem of minimizing the supremum with respect to £ of

1 = P{ly < { < L|G'} + en(t, @) + kE{(L. — L)*| £, G}

can be treated similarly.

Suppose the sample size isfixed in advance. The problem of finding an estimate
which will minimize

supll —~ P{Ly < ¢ < Ly | G'] + kB((L = §'| @) + hE{(L - 9| ¢')]

or

sn:p[l — P{Ly < £ < L |G'} + kE{(L, — L))" | §, G'}]

can be treated by the method of the preceding sections.

The problem of estimating (sequentially or with fixed sample size) the means
of a multivariate normal distribution with known covariance matrix can be
treated in similar fashion.

Suppose it is desired to estimate sequentially the mean ¢ (— © < § < «)
of a normal distribution with unit variance by means of a chance point
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£ (2, -, x,). Let R(, £) be the Wald risk function (cf. [2]), a non-negative
function which measures the loss incurred in using the particular value £ as an
estimate when £ is the actual value. The functions £ (21, - -+ , z,) and R(¢, £Y)
must have suitable measurability properties for which we refer the reader to [2].
Let us seek a procedure £* such that

Ssup[E'{R(E, £91 + en(t, )] = il%f Suep[E (R, B} + ¢ n(, DI
Here n(t, £) is the average number of observations under { when £ is the “true”
mean. The procedure £* will be called a minimax solution. We shall assume that

R(a, b) is a monotonically non-decreasing function of |a — b |, and that there
exists a positive number ¢ such that

f R(0, x)exp{ 2g}dar: < o,

As examples of functions with these properties we may cite

R(a, b) = |a — b},

R(a,b) = (@ — b)~
As before, assume temporarily that £ is normally distributed with mean zero
and variance o’. We verify without difficulty that a solution { = £ which
minimizes

isthe following: n isidentically a suitable constant, say N,and & isZ(1 + 1/ No¢*)™*
= Zh say, so that h < 1. For this solution we have

BIRG 8] + e ) = N + Y [" R a0 ep{- § 6 - 07 as.

Write 4 = & — £ Then

_[: R(t, h) exp {— % & — g)’} di
_ [ RO, hu — [1 — K9 exp{-— Jl’%‘f} du

- [[RO.9 ew{- g6+ 11 - ) £ o

Because of the assumptions on the function R the last expression is & minimum
when ¢ = 0. We may always choose N such that, for large enough ¢”, the integer
N is a constant, say Ny . Also k — 1 as ¢° — «. Thus we conclude that the follow-
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ing is a minimax solution: n = N and { = £* = z. If any estimation procedure
£ is such that sup n(§, £) < N, then
[

m;p E{R( §)} > E{R(, £9)}.

If £ is such that
sup E{R(t, §)} < E(R(, 91,

then
sup n(g £) > No.

If the restrictions imposed above on R are satisfied and if the sample must
always be of given size N, the above argument still holds when 1/N < g, and
shows that the estimate £ minimizes

sup E{R(, &)}

with respect to £.
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