DERIVATION OF A BROAD CLASS OF CONSISTENT ESTIMATES

By R. C. Davis
U. 8. Naval Ordnance Test Station, Inyokern, California

1. Summary. Given a chance vector X with distribution function F(X, 0r),
‘where 07 denotes the true unknown parameter vector, a broad class of estimates
of 07 is derived which is shown to be identical with the class of all consistent
estimates of 07 . A sub-class is obtained each member of which has the following
properties: a.) Its construction depends upon the solution of an equation in-
volving a single vector function of the parameter vector 6 and the members of
a sequence {X,} of independent and identically distributed chance vectors;
b.) the estimate so obtained converges almost certainly to 07 ; c.) it is a symmet-
ric function of the members of the sequence { X,}. In order to obtain this sub-
class it is postulated that a function of X and 0 exists (continuous in 6 for a
certain neighborhood of the true parameter 8, and existing for each X in a sub-
set of the sample space) which satisfies a Lipschitz condition in 8. In particular
if a density function f(X, 0r) exists satisfying certain conditions, the consistency
of the maximum likelihood estimate can be established under regularity condi-
tions quite different from those usually assumed [1]. This is not to be interpreted
as a weakening of the usual regularity conditions but rather as an extension of
the class of consistent likelihood estimates obtained under the usual regularity
conditions.

2. Introduction. The present work is the result of investigations into the
following question posed by J. Neyman: What happens to the asymptotic
properties of the maximum likelihood estimate of 6; when the usual regularity
conditions on F(X, 6) are relaxed? The consistency and efficiency of the esti-
mate are the properties in question, and the present work arose from the ob-
servation that consistency at least can be obtained under conditions much dif-
ferent than those usually assumed [1]. The assumptions made below are exis-
tential in nature, and no general methods are given for the actual construction
of consistent estimates. As stated above, however, the results of this work can
be used to widen the class of consistent maximum likelihood estimates established
heretofore. Although simple upper and lower bounds for the variance of a con-
sistent estimate are obtained, no answer is given to the question of determining
the efficiency of such an estimate. In regard to consistent estimates, J. Neyman
and E. Scott have discussed recently [2] the need for a systematic method of
obtaining consistent estimates. Wald has given necessary and sufficient condi-
tions [3] for the existence of a uniformly consistent estimate of an unknown pa-
rameter 6 when there exists a density function continuous jointly in all of its
arguments, and it is assumed that the domain of each of the unknown parameters
is a closed and bounded set. It is hoped that the class of consistent estimates
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derived below will help shed some light on a general method for actually ob-
taining such estimates. In this connection it is important to point out that if
necessary and sufficient conditions were known for the existence and uniqueness
of a fixed point for a transformation on E, to E, , the weakest possible conditions
could be expressed for the existence of consistent estimates obtained in the
manner given below. It is surmised that the use of a Hélder condition of order
one as presented below is stronger than required.

Let {X;},2=1,2, ---,m, ---, be a sequence of chance vectors in which
X, possesses the probability distribution function F;(X, 8) depending upon an
unknown parameter vector 8. The vector X has components X;,¢ = 1,2, --- ,s,
where X is a chance variable, and 0 has components 6,7 = 1,2, -+ , m. The
problem is to obtain a function of the X; which is a consistent estimate of 0.
We denote by E, the real Euclidean space of s dimensions and by E. a subset
of E; excluding at most a set of probability measure zero. For convenience we
use the symbol || 6 || to denote the norm of 8, where

ol = 61+ 6: 4+ -+ + 62)"
We define in a similar manner the norm of any function which assumes values
in E,, . The following assumption is made:

AssumpTioN 1. There exists a point 8, and a neighborhood W (0, , a) of 6, having
radius a (a > 0) which contains the true parameter vector 0r as an interior point
and there exists an infinite sequence of functions G.(Xy, Xo, -+, X,;0), n =
1,2, -+, ad inf. on E, X E,, to E,, such that

(a) for each m the equation

Gu(Xy, X, -+, X,;0) =0

has a unique solution 8 = 05(Xy, X, -+, X,) in W(0, a). (For the sake of
brevity we usually write G.(X; 0) = G.(Xy, X, -+, X,; 0).)
(b) For every pair of values of 8, , 0, itn W (0, , a) and for some K with 0 < K < 1

lim P{||G.(X, 6;) — G.(X, ) — (6, — 0) ]| =K ||6 — 6:||]} = 1.

(¢) For every ¢ > 0,
lim P{||G.(X, 0r)|] < ¢ = 1.

n-=—>0

3. A consistent estimate of 0, .
TueoreM 3.1.  The solution 8 = 05(X,, Xs, -+, X,) of the equation

Gu(Xy, X, -+, X,5;0) =0

1s a consistent estimate of 0r , providing G.(X; 0) satisfies Assumption 1.
Proor: From Assumption 1b it follows that given & > 0, we have for all
n > N’(5),
*

3.1) P{|| Ga(X, 0r) — (r — 03) || S K || 0 — 07 ][} > 1 — g,
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since G.(X, 0%) = 0. It follows from (3.1) that for all n > N'(5),

G, 00 1| _ 1o vy < | GalX, 00 ] K
From Assumption 1c it follows that there exists N”/(e, ) such that n > N''(e, 8)
implies
8
(3.3) P{IGa(X, 00 [| <e(l —K)} > 1 — 2.

(3.2), (3.3), and a familiar formula in probability imply for all
n > max [N'(8), N (e, 3)],
P{llor— 05| <e >1—a.

It is noted that (3.2) characterizes the speed of convergence of the estimate
0% . The following uniqueness property is noted: If @ given sequence of functions
Gu(X1, Xz, +-+, X, ; 0) satisfies Assumption 1, then 07 is the unique parameter
vector in W (8o , a) which satisfies item ¢ of Assumption 1. The proof of this remark
is left to the reader.

The following remark demonstrates the extreme generality of the class of
consistent estimates obtained in the above manner: The set of estimates of the
parameter vector 8y obtained from the class of all sequences of functions

Gn(X1, X27 7Xn70)

satisfying Assumption 1 is identical with the set of all consistent estimates of the
parameter vector 0y . The proof of this remark is quite obvious and is left to the
reader.

4. Properties of a sub-class of consistent estimates. The question arises
naturally concerning a general method for the construction of a sequence of
functions G (X1, Xa, - -+, X, ; 0) satisfying Assumption 1. The author knows
of no general method. It is possible to describe a sub-class of the class of con-
sistent estimates, the construction of which depends upon the existence of one
function rather than a sequence of functions. This is possible by application
of the strong law of large numbers, and in this way consistent estimates of the
parameter vector are obtained which converge almost certainly to the true
value 87 . Moreover it is clear that under certain conditions the function

Gn(xly XZ) ) Xn; 07')
defined as in equation 4.1 below is an asymptotically m-variate normal variable
AssumpTioN 2. Let {X,},4 = 1,2, -+ ,m, --- ,be a sequence of independently

and identically distributed chance vectors with common distribution function F(X; ),
where 0 ts again the unknown parameter vector.
AssumpTiON 3. There exists a function g(X, 0) on E, X En to E.. such that
(a) for every X ¢ E. and every distinct pair (0, , 6:) in W(0, , a),
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where 0 < K < 1 and |} g(X, 8) || < 1 — K)a.
() Eg(X,00) = [ 9(X,07) dF (X, 0 = 0.
We define the function G,(X, 6) as follows:

4.1) Gu(X,0) = 1 ; o(X;, 0).

The following lemmas are required:

Lemma 4.1. G.(X, 0) as defined in (4.1) satisfies the conditions in Assumption
3 with G.(X, 0) replacing g(X, 0).

The proof is sufficiently obvious to be omitted.

Lemma 4.2. G.(X, 07) — 0 almost certainly as n — «, if Assumptions 2 and
3b hold.

Proovr: Since Eg(X;, 0;) = 0,¢ = 1,2, --- , n, and the chance variables
g(X;, 07) are independently and identically distributed, this follows immediately
from a theorem due to Kolmogorov [5].

TueOREM 4.1. If Assumptions 2 and 3 hold, then the equation G.(X, 6) = 0
has a unique solution 8 = 0%5(X;, X,, -+ , X,) in W(6y, a), where 07 is a con-
sistent estimate of 0r and ts moreover a symmetric function of the observation vec-
tors X, Xo, --- , X,

Proor: We obtain the solution 8} by the method of successive substitutions.
Define

0, = 08— Go(X, 8), -+, 0541 = 0, — Gu(X, 8).

In view of Lemma 4.1 we can apply a well known existence theorem [4] in the
theory of functions to prove that the sequence {0,} converges to a limit 85 which
is also in W (6, , a). The same theorem establishes the uniqueness of the solution
in W(6,, ). This uniqueness property together with lemmas 4.1 and 4.2 estab-
lish the fact that the sequence {G,.(X, 0)} as defined in equation (4.1) satisfies
Assumption 1. It follows immediately from Theorem 3.1 that 0% is a consistent
estimate of 6. We can, however, prove a stronger relationship.

TaeOREM 4.2. The estimate 0% defined in Theorem 4.1 converges almost certainly
lo 0r .

Proor: From Lemma 4.2 we know that given any number ¢ > 0, there exists
an integer N(e) such that for all n > N (e)

P Gu(X, 87) || <e(1 = K)} = 1.
From Assumption 3a and Lemma 4.1 we see that
1 Gu(X, 0r) — (8 — 0) || < K || 07 — 01 1],
since G(X, 07) = 0. Then
1 Gu(X, 80 | = (1~ K) || 6 — 67 ]
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Clearly the set of X ¢ E, for which || 6, — 0} || < e includes the set of X for
which || G.(X, 0:) || < (1 — K).
Therefore, for n > N(e),

P{llor — 07|l < ¢} 2 P{]|Gu(X, 00) || < (1 — K)} =1,

and the proof is completed.

The uniqueness of the parameter value 6r in the neighborhood W (6, a)
follows immediately from the remark succeeding Theorem 3.1 since Assumption
1 is valid in Theorems 4.1 and 4.2.

It is interesting to note that the application of a theorem in the theory
of functions of a real variable gives the result that if the function g¢(X, 0) is
continuous on a bounded and closed set in E, X E, and if we take for E, a
bounded and closed set, then 05(X;, X, ---, X,) is a continuous function of
X;, Xo,---, Xofor X; e B, (6 =1, 2, --- , n). If we assume the continuity of
¢9(X, 0) in X for each 6 in W (8, a) the following remark demonstrates an inter-
esting relationship concerning the uniqueness of the solution for 6 in the equa-
tion Eg(X, 8) = 0: If in addition to Assumption 3 we assume that g(X, 0) s
continuous in X for every X in E, and every 6 in W (6, a) and of at least one
of the components g.(X, 0), 1 < 1 £ m of the m-dimensional vector function
g(X, 0) satisfies also a Lipschitz condilion:

194X, 61) — g«(X, 62) — (6 — 8) || = K || 6, — 6]

Jor every distinct pair 0, , 8. 1n W (0, a), then forall 6 in W(6, , a), 0z isthe unique
solution for 0 of the equation Eg(X, 0) = 0.
The proof of this remark is left to the reader.

6. Upper and lower bounds for the expected squared error of 0;(X;, Xz, - - - »
X.). Denote by ¢.(X,0),7 = 1, 2, - - - , m, the m components of the chance vector
g(X, 6). We now make an additional assumption.

AssuMPTION 4.

Elgi(X, 0r)g;(X, 07)] = X\

existsforv = 1,2, --- mandj =1,2,---,m.

It follows from Assumptions 2, 3b, and 4 and the Lindeberg-Lévy form of the
Central Limit Theorem that the vector v/nG.(X, 0r) tends in probability to an
m-variate normal distribution with means zero and moment matrix (\;).

Now from Assumption 3a and Lemma 4.1

il Gn(x7 07‘) H

S ” Gn(xy 07‘) ”
1+ K )

(5.1) < Lo

< llen —or]|

For convenience define
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We obtain then

Bl Gu(X, 00 ||F = 2.
It follows then from equation (5.1) that
A * 2 A
_r < - <~

6. The consistency of maximum likelihood estimates. The results of this
paper can be used to extend the class of consistent maximum likelihood estimates
established heretofore [1].' Assume that F(X, 0) admits a density function
f(X, 6) with the property

9 [ " of
émf_mf(x,e)dx_ f_wao (X, 0) dX.
Then
E| 21 f(X,0) | =0
60 n f d ) = .
The maximum likelihood estimate of 8 is obtained by solving the equation

a3
T In L(X,08) =0,

where
L(x; 0) = I;Il f(xiy 0)'
If a sample X;, Xz, -+, X, is obtained as the result of n random independ-

ent drawings from the distribution having the c.d.f. F(X, 6), the sample values
will satisfy Assumption 2. Assumption 3b holds as assumed above. If we assume
also that the function 8/00 In f(X, 8) satisfies Assumption 3a, it follows directly
from Theorem 4.2 that the maximum likelihood estimate converges almost
certainly to the true parameter vector as the sample size approaches infinity.

The author wishes to acknowledge his indebtedness and gratitude to Professor
Jerzy Neyman for the many helpful suggestions made during the preparation
of the paper.
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