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1. Summary. Let us consider a situation where only the r smallest values of
a sample of size n are available. This paper investigates the case where n is
large and r is of the form pn + O(7/n).

Properties of some well known non-parametric point estimates, confidence
intervals and significance tests for the 100p%, point of the population are in-
vestigated. If the sample is from a normal population, these non-parametric
estimates and tests have high efficiencies for small values of p (at least 959,
if p < 1/10).

The other results of the paper are restricted to the special case of a normal
population. Asymptotically ‘“best” estimates and tests for the population per-
centage points are derived for the case in which the population standard devia-
tion is known. For the case in which the population standard deviation is
unknown, asymptotically most efficient estimates and tests can be obtained
for the smaller population percentage points by suitable choice of p and O(\/n).

The results derived have application in the field of life testing. There the
variable associated with an item is the time to failure and the r smallest sample
values can be obtained without the necessity of obtaining the remaining values
of the sample. By starting with a larger number of units but stopping the experi-
ment when only a small percentage of the units have “died”, it is often possible
(using the results of this paper) to obtain the same amount of “information”

with a substantial saving in cost and time over that which would be required

if a smaller number of units were used and the experiment conducted until all
the units have ‘““‘died”. Jacobson called attention to applications of this type
in [1].

2. Introduction and statement of results. In life testing, information con-
cerning the smaller population percentage points may be of primary interest.
The principal aim of this paper is to investigate the properties of some well
known non-parametric estimates and tests of the smaller population percentage
points which are based on statistics of the type used for the sign test. These
non-parametric results are easy to apply and have several other desirable prop-
erties (see Theorem 1 and its discussion). In particular, if the 100p9, point
is to be investigated, it is only necessary to fail approximately 100p9, of the
number of starting items to obtain the required statistics (n large). Thus, if
the non-parametric results should also happen to be reasonably efficient, they

1 The author would like to express his appreciation to Max Halperin for calling atten-
tion to this problem and for valuable advice and assistance in the preparation of the paper.
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would appear to be ideal for a life testing situation where a smaller population
percentage point is to be investigated.

Examination shows that life tests of the ‘“wear out” type sometimes yield
empirical distributions which are approximately normal. Also in many cases an
approximately normal distribution can be obtained by an appropriate monotonic
change of variable. Thus the case in which the n observations are a sample from
a normal population will receive special consideration in this paper.

Investigation of the efficiency of the non-parametric estimates and tests will
be limited to the situation where the n observations are a sample from a normal
population. Three cases will be considered:

(A). Asymptotic efficiency of the non-parametric results as compared with
the corresponding most efficient results based on the entire sample
(population variance unknown).

(B). Asymptotic efficiency of the non-parametric results as compared with
the corresponding most efficient results based on the pn 4+ O(\/n)
smallest order statistics for the situation where the variance of the nor-
mal population is known.

(C). Asymptotic efficiency of the non-parametric results as compared with
the corresponding most efficient results based on the gn + O(\/n)
smallest order statistics where g is slightly greater than p (population
variance unknown).

The definition of ‘“‘asymptotic’ efficiency together with some of its properties
is given in Section 3. Only asymptotic efficiencies will be considered.” However,
the efficiencies obtained for the asymptotic case would seem to represent lower
bounds of the efficiencies for the corresponding non-asymptotic cases since ex-
perience indicates that the efficiency of non-parametric results usually de-
creases as the sample size increases.

First let us consider case (A). From Theorem 3, the asymptotically most ef-
ficient results for estimating or testing the 100p%, population point on the basis
of the entire sample (population variance unknown) are furnished by the non-
central {-statistic. An expression for the asymptotic efficiency of the non-para-
metric results as compared with the corresponding results based on the non-
central {-statistic is given in the Corollary to Theorem 3. The reciprocal of this
efficiency represents the factor by which the original number of starting items
must be multiplied if the non-parametric results are to asymptotically furnish
the same “information” as the non-central ¢-statistic applied to the original num-
ber of starting items. Table 1 contains values of this factor. Although a larger
number of starting items are used by the “information equivalent’’ non-para-
metric results, a noticeably smaller number of items are failed. The factor by
which the number of items failed is decreased equals the value of p multiplied
by the factor by which the number of starting items was increased for the “‘equiv-

2 Some power function comparisons for the non-asymptotic case were giveﬁ by Paul
H. Jacobson in [1].
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alent” non-parametric result. Table 2 contains a list of some of the resulting
factors.

Next consider case (B). The first step in the analysis for this case consists in
obtaining the asymptotically most efficient results. These derivations are con-
tained in Theorems 4 and 5. The Corollary to Theorem 5 contains an expres-
sion for the asymptotic efficiency of the non-parametric results for case (B).
The factor by which the original number of starting items must be multiplied
to obtain “‘information equivalent” non-parametric results is obtained in the
same way as for case (A). Table 1 lists values of this factor. In this case both the
number of starting items and the number of items failed are slightly increased
by use of the ‘“‘equivalent” non-parametric results. The factor by which the
number of items failed is increased equals the corresponding factor for the in-
crease in number of starting items. For convenience of reference, however, values

TABLE 1

Asymptotic ratio of total numbers of ttems tested
(Non-parametric test over most efficient test)

\ 01 02 | 06 | 10 | 20 | 30 | 40 | 50 | 70
Case

(A) 377%| 270%| 1909, 1609 150%| 153%,| 155% 157%
(B) 1019 102%)| 103%| 1059, 109%, 114%| 1209, 128% 164%,
(©) 1119 1149, 1189, 122%| 129%, 1409, 148%

of this factor are also given in Table 2. If the variance of the normal population
were unknown, the asymptotic efficiency of the non-parametric results would be
at least as great as that obtained for case (B), and likely greater.

Finally consider case (C). Let p be replaced by 8 in Theorem 5 while the value
of 8 corresponding to a given value of p is defined by the relation in Theorem
6. By suitable choices for the values of 8 and O(1/n) in Theorem 5, it is possible
to obtain asymptotically most efficient results for the population 100p%, point
when the population variance is unknown and only the gn + 0(\/n) smallest
values of the sample are available. These results are presented in Theorem 6.
The Corollary to Theorem 6 contains an expression for the asymptotic efficiency
of the non-parametric results as compared with the corresponding results of
Theorem 6. The factor by which the number of starting items must be increased
to obtain ‘“‘equivalent” non-parametric results is computed as in cases (A) and
(B). Table 1 contains values of this factor. The value of 8 represents the fraction
of starting items which are failed if the estimates and tests of Theorem 6 are
used. Table 2 contains corresponding values of 8 for certain values of p. The
factor by which the number of items failed is decreased equals p/g8 times the
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factor by which the number of starting items was increased to obtain the “equiv-
alent” non-parametric results. Table 2 presents values of this factor.

The results of Theorem 6 furnish an asymptotically efficient method of esti-
mating and testing the smaller population percentage points while only failing
a small percentage of the starting items (for the case of normality). Since a larger
number of items are failed and much more work is required for computing the
necessary statistics, however, this method is not necessarily preferable to the
non-parametric method from the viewpoint of “information” per unit cost. In
many cases the difference in cost will be slight. Since the non-parametric results
are valid under much more general conditions, they would seem to be preferable
for these cases.

TABLE 2
Asymptotic ratio of numbers of items failed
(Non-parametric test over most effictent test)

~_ g | ou3 | 0234 | o612 | 130 | 287 | 416 | .70
Case\j 01 02 05 10 20 30 40 | 50

(A) 3.77%| 5.40%| 9.50%| 16.0%, 30.2%| 45.9%, 62.0%,78.5%

B) 1019, 1029%, 103%, 105%, 109%,| 1149, 1209%) 1289,

©) 99% 98%; 9% 94% 90%| 88% 85%

3. Definition of asymptotic efficiency. In this section the n observations are
assumed to be a sample from a normal population. Let the 100p9, point of the
population be denoted by 8, . Several classes of results for investigating 6, are
considered in this paper. For example, the non-parametric estimates and tests
represent one class; the asymptotically most efficient results based on the entire
sample (population variance unknown) represent another class; ete. The results
considered consist of point estimates of 8, , confidence intervals for 6, , and sig-
nificance tests for 6, based on these confidence intervals. For a specified class,
every point estimate and every endpoint of a confidence interval (a one-sided
confidence interval has only one endpoint) consists of some statistic T whose
variance is of the form o%/n + o(1/n) for large n. Here o% is independent of n
and has the same value for all statistics T of the class. Also for every such statis-
tic T the quantity

\/;l(T - 011)/0'1’

has a distribution which is asymptotically normal with unit variance and some
finite mean A which is independent of the unknown parameters of the normal
population. By suitable choice of 7', the mean A can be made to have any speci-
fied value.
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Now let us define the asymptotic efficiency of the class of non-parametric
results as compared to a class of results of the type defined by (A), (B) or (C).
Let the non-parametric results be based on n sample values while the other class
of results is based on m sample values. Let the common value of ¢ for the non-
parametric results be denoted by o7 while the common value of this quantity for
the other class is denoted by o3 . If o;/n = o3/m when m = nE, then the asymp-
totic efficiency of the non-parametric results (compared to the specified class
of results) is defined to be 100EY%,. For the situations considered in this paper,
E is independent of n, m and the parameters of the normal population.

Asymptotic efficiency, as defined in the preceding paragraph, has the property
that the statistic (or statistics) yielded by a non-parametric result based on =
sample values has approximately the same distribution as the corresponding
statistic (or statistics) based on m sample values from the specified classif m = nE
(n large). For example, consider a non-parametric unbiased estimate T, of 6,
based on n sample values and an unbiased estimate T of 6, from the specified
class based on m sample values. Then, if m = nE, the distributions of

V(T — 6,)/o1, Vn(Ts — 0,)/0

are asymptotically identical (note that oi/n = o3/m). Similarly for the end-
points of confidence intervals. Consequently the power functions of significance
tests based on corresponding confidence intervals are asymptotically identical
if m = nE. It would therefore appear that the definition chosen for asymptotic
efficiency is suitable for the situations to which it is applied.

4. Notation. In this paper ¢(1), - - -, t(n) will represent the values of the set
of all » observations arranged in increasing order of magnitude. Then

t(l)) ] t(T)

are the r smallest values of the set of n observations. The notation ¢(r) has mean-
ing only if r is an integer such that 1 < r = n. Often, however, expressions of
the form t[pn + O(+/n)] will be encountered. In what follows, an expression of
the form {(z) has the interpretation ¢ (largest integer <z). For example,

t(487%) = {(487).

Also the r = pn + O(A/n) smallest observations are frequently referred to;
here r is interpreted to be the largest integer contained in pn + O(+/n); ete.

5. Theorems and derivations. First let us consider some well known estimates
and tests of the population percentage points which are based on statistics of
the type used for the sign test. These estimates and tests are valid under ex-
tremely general conditions. It is not necessary that the observations be drawn
from the same population or even that any two observations come from the
same population. Population percentage points are not necessarily unique. The
strongest continuity restriction imposed is that the population ¢df be continuous
at the percentage point considered. These results follow from
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TaEOREM 1. Let (1), - - - , t(n) represent the values of n observations arranged
wn increasing order of magnitude. The n observations are statistically independent
and from populations which satisfy the conditions:

(I). The populations have at least one 100p%, point in common.
(IT). If the populations have only one common 100p%, point, the cdf of each
population is continuous at that point.
Let 6, denote the value of the common 100p%, point if it is unique, or the open in-
terval of common 100pY, points otherwise (i.e., the interval of common 100p%, points
with its endpoints deleted). Then asymptotically (n — o)
@). t(pn) 7s a median estimate of 6, .
(ii). Pritlpn + Kov/np(1 — p)] < 6,} = Pritlpn + Kov/np(1 — p)] £ 6,}
= o,
where Ko 18 the standardized normal deviate exceeded with probability . Relations
(1) and (ii) are approximately satisfied if pn > 5and p < 3.

Proor. This theorem is a direct application of the binomial theorem. Condi-
tions (I) and (II) assure that the equality between the probabilities in (ii)
holds. Relations (i) and (ii) are obtained by using the normal approximation to
the binomial theorem; this approximation is reasonably accurate if pn > 5 and
p = 3 (see [2]).

The non-parametric confidence intervals investigated are of the forms

tlon + Biv/n 4+ o(\v/n)] < 6,,  tlpn + Bo/n + o(x/n)] > 6,,
tlpn + Biv/n + o(n/n)] < 8, < tlpn + Ben/n + o(\/n)] (B: < By),

(these intervals have the same confidence coefficient if < is replaced by < and
> by 2). The significance tests considered are those obtained from these con-
fidence intervals while the point estimates of 6, are based on single order statis-
tics of the form t[pn + B\/n + o(n/n)].

When 6, is an open interval, (i) and (ii) need interpretation. The meaning of
(i) is that the probability of t(pn) exceeding every value of 6, has the value
and that the probability of it being less than all values of 8, also has the value 1.
The inequality t[pn + K«\/np(l — p)] £ 6, has the interpretaton that every
value of 6, is greater than or equal to {fpn + Ku\/np(1 — p)]. Similarly for
tlon + Kav/np(1 — p)] < 6, .

The purpose in introducing the case where 6, is an open interval was to point
out that situations where population percentage points are not unique cause
little difficulty if suitably interpreted.

Non-parametric results of the type considered in Theorem 1 are also available
when the sample size is not large. For any sample size n, if the conditions of
Theorem 1 are satisfied,

n !
Prlil) < 0] = Prltl) = 0] = 3, s 51 = )"
The probability relations in Theorem 1 were obtained by approximating this
summation for large n. By suitable choice of r, confidence intervals and signif-
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icance tests with a wide range of satisfactory confidence coefficients and sig-
nificance levels can usually be obtained for a given value of n.

The above discussion emphasizes the generality of application of the non-
parametric estimates and tests. For most practical situations, however, it is
permissible to assume that the observations are a random sample from a popula-
tion which has a probability density function that is non-zero over the range of
definition and differentiable several times. Then asymptotically t(pn) is also a
mean estimate of 6, (which is now necessarily a single point). Moreover, the
asymptotic distribution of {fpn + C+/n + 0(n/n)] can be found in terms of p,
C, 0, and the value of the probability density function at 8, . These results are
a consequence of

THEOREM 2. Let the population from which the n sample values were drawn have
a pdf f(t) such that f(t) 5% O over its range of definition and f'(t) exists and is con-
linuous tn some netghborhood of t = 6, . Then the variable

\/n/p(l - p)f(gp){t[lm + 0\/7_1 -+ 0(\/7—7')] - 011}

has a distribution which approaches the normal distribution with mean

C/vpa — p)

and untt variance as n — .

Proor. If pn is replaced by pn 4+ C+/n + o(v/n), the method used to prove
this theorem is completely analogous to the proof presented on pp. 36869 of [3].

Now let us consider the asymptotically most efficient results for estimating
and testing 6, based on the entire set of observations for the case of a sample
from a normal population (population variance unknown).

TuEOREM 3. Let the n observations be a sample from a normal population (un-
known variance o”). Asymptotically the most efficient point estimates, confidence
intervals and significance tests for 6, using all the observations are those based on
the non-central t-statistic. The value of o (see Section 3) for these results based on
the non-central t-statistic is *(1 + K%/2).

CoroLLARY. For case (4) the asymptotic efficiency of the non-parametric results
equals

100(1 + K3/2)/2rp(1 — p) exp (K3) %.

Proor. The maximum likelihood estimate of 8, based on all n sample values is

(1) %213 16) — K, \/}; [t(i) - 71321: t(j)]2/(n — ).

This quantity is equivalent to the non-central t-statistic, as can be seen by
multiplying and dividing [(1) — 6,] by

VE[o-1Sua] /w-n,

From maximum likelihood theory, (1) is an efficient estimate of 8, . Asymp-
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totically (n — o) the variance of (1) is of the form
(1 + K3/2)/n + o(1/n),

and it is easily seen that the variance of an endpoint of a confidence interval for
6, based on the non-central ¢-statistic is also of this form. The corollary follows
from combining Theorem 2 with Theorem 3.

Next let us investigate the situation where only the r = pn + 0(1/n) smallest
values of a sample of size n from a normal population with mean p and variance
o, denoted by N (u, ¢°), are available. First let us consider the asymptotic dis-
tribution of

[i t() + 2a,(n — r)t{r)

r + 2a,(n — 1)

(2) /
(n — r)(b, + 2a,K,) o
Rt r + 2a,(n — 1) J:I/ Vr 4 2a,(n — 1)’
where

a, = Kp/24/2x (1 — p) exp (% Ki) + 1/47(1 — p)? exp (K2),

by = 1/+/2x(1 — p) exp <% Ki)-

This distribution is given by

TuaeoreM 4. Let t(1), - - , t(r) be the r = pn + O(\/n) smallest values (ar-
ranged in increasing order of magnitude) of a sample of size n from N (u, o). Then
asymptotically (n — =) the distribution of (2) is N(0, 1).

CoROLLARY. Let 1 = pn + C~/n + o(\/n). Then asn increases the distribution
of

I:El: t@) + 2a,(n — r)t(r) - 1 — p)(p + 2a,K,) :I L —
r ¥ 2a,(n — 1) R N VARV T

approaches the normal distribution with unit variance and mean

C(by + 2a,K,)/[p + 2a,(1 — p)I"™.

Proor. The proof of this theorem is long and will be deferred to section 6 of
the paper.

If the value of ¢ is known, the Corollary to Theorem 4 can be used to obtain
point estimates, confidence intervals and significance tests for any population
percentage point (including ). The resulting estimates and tests are asymptot-
ically most efficient. This follows from

THEOREM 5. Consider the r = pn + O(\/n) smallest values of a sample of size
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n from N (u, o°) where " is known. Asymptotically (n — ) the variance of every
unbiased estimate of u based on only t(1), --- , t(r) and o is greater than or equal
to a quantity of the form

o*/nlp + 2a,(1 — p)] + o(1/n).

CoroLLARY. For case (B) the asymptotic effictency of the non-parametric results is

1 ..,
2 Kyexp| —z K, 2
exp (_Kp) /( < 2 ) exp(_I{p)>:l
100[21@(1 —/ Pt  tma—p/l%

Proor. The proof of this theorem is similar to the proof presented for The-
orem 4 and will be given in section 6 following the proof of Theorem 4.

Let p be replaced by 8 in Theorem 4. Even if ¢ is unknown asymptotically
most efficient estimates and tests can be obtained for the 100p9%, point of the
population if 8 is defined by

3) K, = (1 — B)(bsg + 2asKs)/[8 + 2as(1 — B)].

TuEoREM 6. Let p, (0 < p < 1), be given and B defined by (3). Let t(1), - - -, t(r)
bether = Bn + C/n + o(\/n) smallest values of a sample of size n from a normal
population. Then asymptotically

Pr{[zlr: t(z) + 2as(n — r)t(r):l/[r + 2a5(n — 1)) < 0,,}

—C(bg+2apKp) [ [B+2ag(1—B)13/2

-7l

CoroLLARY. For case (C) the asymptotic effictency of the non-parametric resulis s

|
100[ exp (—K?%) //<ﬂ + Ky exp (;_5 Kﬂ) 4 &P (—K§)>:] o,

2mp(1 — p) V2 2n(1 — B)
Proor. Theorem 6 is an immediate consequence of relation (3) and the Corol-
lary to Theorem 4. The Corollary to Theorem 6 follows from Theorem 2 and
Theorem 6.

—2
e d.

6. Long proofs. This section contains the long proof of Theorem 4 and the
related proof of Theorem 5.
6.1. Proof of Theorem 4. If t(r) is such that

p— Ko — 0 2 4() £ u — Ko + 074,

the ratio of the value of the joint probability density function f of ¢(1), - - - , t(r)
to the value of the function

e () = 00]
- (n—1na [t(r) oy Kp] - (n—1b [t—@T—i‘ + Kp]}

4)
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is of the form 1 + o(1). Here (and in the remainder of section 6) @ = a, ,b = b, .
Also, for large » and any positive ¢, the integral of f over the ranges of the
t(1), ---, t(r — 1) and for t(r) between p — Ko — n 7 andy — Kpo + 0t
differs from unity by a quantity which is of the order o(1), i.e., a quantity which
—0 asn — o,

Now consider the moment generating function of (2), i.e., E[¢’®]. In evaluat-
ing this function of 8, let the range of integration of ¢(r), (i.e., the range after the
other variables have been integrated out), be subdivided into the five intervals

. —o to u— Do, u— Do to p—Kpcr—n—mo,
p— Ko =0 to p— Kyo+ 0",
u—szr—{—n-”m to u+ Do, u+ Do to o.

Here D is a positive constant which is independent of » and such that

/D)™ (/P 1/ (1 — p)I" < exp [_ = I\(/%Kp)]

for n sufficiently large and
D> |K,|4+n4/s 1— N(D) =N(—D) < e*2"/D,

where

1 z
N(z) = \—/5—1;[ e qy.,

First let us consider the interval p — Kyo — 0™ to u — Ko + n™*"°. Using
(4) in place of f, completing the square in the exponent, making the change of
variable

z(@) = 4()) — 6//r + 2a(n — 1) @ =1,-,7),
integrating z(1), - -+ , z(r — 1) over their ranges and then 2(r) over the interval
p—Kpo— 0 —0/7/r + 2aln — 1) to

w— Ko+ 0" —0/7/r + 2aln — 1),
an expression of the form
(5) exp (6°/2) + o(1)
is obtained. From the above results, this expression differs from the correspond-
ing integration of f by a term of order o(1); hence the contribution to the mgf
for the interval considered is of the form (5).

Next consider the interval u — Kpo + 7 to u + Do. After t(1), -- -,
t(r — 1) have been integrated out, the integrand becomes

n! tr) — u 6 -1
(r — Dln — ! {N[ I T VT F 2a(n — r)]}

o ]

20a(n — 1) t(r) — u bé(n — 1)
o] e Rve e o }
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By writing {N[(t(r) — w)/oc — 6/A/r + 2a(n — r)]}" " in the form
[N (t-(f—)o;"ﬂ_ {[1 —0(1 4+ o())/\/r F 2aln = 1)

N () v e (O

and maximizing exp {20a(n — 7)[t(r) — wl/o\/r + 2a(n — r)} with respect to
t(r) in the specified interval, it is seen that the value of (6) is less than an expres-
sion of the form

n! exp (C160A/n) ) — tr) — T
¢ = Ditn —r)!{N[ ; ]} {1 _N[ . M]} ol

for n sufficiently large. Differentiation shows that {N[]}" {1 — N[]}]* " is a
decreasing function of ¢(r) in the specified interval if n is large enough. Also, if
t(r) = p — Kyo 4+ n~*™, for large n the value of

(r—1)n—6/10
ag
. {1 — NI t(r) L |}(" T)n-”w/ (r~1)n—6/10(1 )(n_r)..sllﬁ

is less than a constant which is less than unity. Thus the value of (6) is less than
a quantity of the form

nE B e (O + o),

which in turn is less than an expression of the form
Civ/n exp (—Cin'™) + o(1)

for n sufficiently large. Thus the integral of (6) over the specified interval is of
the order o(1). An analogous proof shows that the contribution to the mgf for
the interval 4 — Do to p — Ko — n~*" is also of order o(1).

Finally consider the interval u + Do to «. For large n the integral of (6)
over this interval is less than an expression of the form

) nlp 1 — p)"”’ fw exp { —1(n — 17 [f(_r)____‘f:r} dt(r) + o(1);
b+Do v

r—1Dln —n)!

i.e., the contribution to the mgf for this interval is of the order o(1) since the
coefficient of the integral is less than an expression of the form C /n. The upper
limit (7) was obtained by replacing

N {[¢) — pl/o — 60//r + 2a(n — 1)} by 1,

I—N[%——'a] by %—)exp{—%[t(r)_a—ﬁir}’
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/D)y (1/p)—1 {1/ — p)l* exp [~6(n — 7) (b + 2aK,)/\/r + 2a(n — 7))
by 1.

A similar type proof shows that the integral of (6) from — » to u — De is also
of the order o(1).

Thus the mgf of (2) is of the form (5) for large n and Theorem 4 is verified.

6.2. Proof of Theorem 6. Let us consider a single sample value from the multi-
variate population consisting of the r smallest order statistics of a sample of size
n from N (u, o”), where ¢” is known. Then the variance of every unbiased estimate
of u based on this sample and the value of ¢” is greater than or equal to the re-
ciprocal of

[ 7 o

- f_ . f @ e 1°gf fdtQ) - - der),

]

®)

where f is the joint pdf of the r smallest order statistics of a sample of size n
from N (s, ¢*). For proof of this statement see pp. 48081 of [3]. In the lower part
of (8) the variables t(1), --- , {(r — 1) can be integrated out leaving an explicit
function of {(r) to be integrated from — « to «. To evaluate this integral for
large n, choose some large but fixed interval 4 — Do to u + Do as was done in
the proof of Theorem 4. Using a method similar to that presented on pp. 368—
69 of [3], the value of the integral for the interval 4 — Do to p + Do is found
to be of the form

nlp + 2a(1 — p)]/d* + o(n).

A procedure analogous to that used in the latter part of section 6.1 shows that
integration outside this interval yields an expression of order o(n).
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