FUNDAMENTAL LIMIT THEOREMS OF PROBABILITY THEORY!
By M. Lokve?
University of California, Berkeley

no sooner is Proteus caught
than he changes his shape

1. Introduction. The fundamental limit theorems of Probability theory may
be classified into two groups. One group deals with the problem of limit laws
of sequences of sums of random variables, the other deals with the problem of
limits of random variables, in the sense of almost sure convergence, of such
sequences. These problems will be labelled, respectively, the Central Limit Prob-
lem (CLP) and the Strong Central Limit Problem (SCLP). Like all mathemati-
cal problems, the CLP and SCLP are not static; as answers to old queries are
discovered they experience the usual development and new problems arise. The
development consists in (i) simplifying proofs and forging general tools out of
the special ones (ii) sharpening and strengthening results (iii) finding general
notions behind the results obtained and extending their domains of validity.
Analysis of this growth will put in relief the role and the interconnections of the
Sfundamental limit theorems.

Summary. The growth of the CLP for independent summands can be divided
into three (overlapping) periods. The first covers the Bernoulli case and the
corresponding limit theorems of Bernoulli, de Moivre and Poisson. The first two
theorems gave rise to the notions—from which the classical CLP stems—of
the Law of Large Numbers (LLN) and of Normal Convergence (NC). Poisson’s
approach belongs to the set-up of the modern CLP.

The second period extends over two centuries and is devoted to the extension
of the domains of validity of LLN and NC. This is the classical CLP period.
Lyapunov’s crucial work, submitted to the above treatment, led to the discovery
of the natural boundaries of these domains by Lindeberg, Kolmogorov, Feller
and P. Lévy.

However, the LLN and NC problems are but two particular cases of the
general problem of limit laws of sequences of sums of independent random
variables. The coming into sight and the solution of this problem—the third
period of the CLP—covers less than ten years. The tools forged for the classical
CLP proved to be powerful enough and the final solution is due to P. Lévy,
Khintchine, Gnedenko and Doeblin.

1 This paper was presented to the New York meeting of the Institute of Mathematical
Statistics on December 27, 1949.

Editor’s Note: The Institute of Mathematical Statistics has formed a Committee on
Special Invited Papers to invite lecturers to deliver expository addresses to the Institute
with the understanding that the Special Invited Papers are to be published in the Annals
of Mathematical Statistics. This paper is the first one invited by the Committee.

* This work is supported in part by the Office of Naval Research.
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322 M. LORVE

The CLP for dependent variables started with so called Markoff chains.
The study of their limit properties is due essentially to Markov, S. Bernstein
and Doeblin. For more general forms of dependence the LLN and NC problems
were investigated by P. Lévy and Loeve after the crucial work of S. Bernstein.
The modern CLP was considered only recently (Logve).

The SCLP stems from the strengthening by Borel of the Bernoulli theorem
and the sharpening of Borel’s result by Khintchine. They gave rise to the no-
tions of Strong Law of Large Numbers (SLLN) and of the Law of the Iterated
Logarithm (LIT).* The domains of validity were extended to their boundaries
by Kolmogorov, P. Lévy and Feller. In the case of dependence, results are due
to G. D. Birkhoff, P. Lévy, W. Doeblin, and Loeve. However, the SCLP has
not attained, at present, the harmonious development of the CLP.

Notations. Let £(X) be the law of a (real) random variable (r.v.) X. The law
is defined by the distribution function (d.f.) F(z) = P(X < z).Asis well known
L£(X) is determined by the characteristic function (ch. f.)

0

flw) = f_ ™ dF (x), —w <y < 4w,

When a r.v. possesses subscripts, the same subscripts will be used for its d.f.
and ch.f. EX will denote the expectation of X:

EX = f_ :o » dF (@),

and ¢*(X) will denote the variance of X:
@(X) = E(X — EX)".

With a random event 4 we associate a r.v., to be called ¢ndicator of the event A4,
which takes values 1 and 0 respectively, according as A occurs or does not occur.
If X is the indicator of an event A of probability p, then EX = p and *(X) = pq,
where ¢ = 1 — p. To avoid trivialities we shall assume that pg # 0.

Two laws £(X1) and £(X;) will be said to belong to the same complete type
if there exist two numbers a@ 5 0 and b such that P{X; < z} = P{aX. + b < z}.
If values of a are restricted to positive values, then the two laws are said to
belong to the same type. If two independent r.v.’s obey £ and their sum belongs
to the type of £, then £ and its type are said to be stable. Three classes of laws
play an essential role in the CLP: the normal and the degenerate types and
the Poisson complete types. ’

AN(m, o) is a normal law if it is defined by

— _1_ ? — (1/202) (t—m)2
F(z) = ~2n Loe dt (¢ > 0).

3 For a very thorough and deep analysis of the NC and LIT problems and their solutions
see FELLER, Bull. Am. Math. Soc., Vol. 51 (1945), pp. 800-832, under the same title as that
of the present paper.
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£0m) is a law degenerate at m, if it attaches probability 1 to the value m.
P(\; a, b) is a Poisson law if

k
P(X = ak+b)=%e‘* AN>0), k=012-;

the familiar Poisson law is P(; 1, 0).

A law £(X,) is said to converge to the law £(X) as n — «, if F,(z) con-
verges to F(x) at the continuity points of the latter. In this paper, all limits will
be considered for n — o, if not otherwise stated.

The structure of sequences of r.v.’s whose limit properties are investigated
will be called the limiting process of the problem. The limiting process of sequences
of sums is that of sequences of the form S,,, = 2 i%1 Xnx, where », — .The

limiting process of normed sums is that of sequences of the form Sa _ b, with

an
S, = Y.my X, wherea, > 0 and b, are real numbers. Normed sumsare a special
Xy b S
form of sequences of sums: take v, = n, Xop = == — then S,,, = =% — b,.
n n a,

To avoid repetitions we shall note, once and for all, that limit types rather than
limit laws appear in the case of normed sums, because, if £(X) is their limit law,
then any law of its type is obtainable as a limit law by a convenient change of
origin b, and of scale a,, independent of n. The importance of the notion of
type is due, primarily, to this property. In fact, even more is true: if £(X,)
converges to £(X) and £(a.X» + ba) converges to £(Y), then £(X) and L(Y)
belong to the same type, provided neither is degenerate (Khintchine [20]).

I. CENTRAL LiMmiT ProOBLEM

2. Origin of the CLP: Binomial case. Three limit theorems are at the origin
of the CLP; the first, due to Bernoulli ([2], 1713), laid the ground. Let S, be
the number of occurrences of an event A of probability p in n identical and inde-
pendent trials. Then, for every e > 0,

&L — p‘ > e} — 0.

P{3

Bernoulli found this result by a direct, but cumbersome, analysis of the be-
havious of the binomial probabilities

P{S, =k} = Cip*¢"™, k=0,1,---,n.

Sharpening this analysis, de Moivre ([7], 1730) obtained the second limit theorem
of probability theory which, in the form given to it by Laplace, states that:
For every x

P {Sn — np < } 1 ‘[a; —312 dt
—— < T = e A
vV npq Vor Lo
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Suppose now, with Poisson ([36], 1837), that the probability »p = p, depends
upon the number n of trials and, more precisely, that p, = 7)—; , where \ isa posi-

tive constant. Write then S, ., instead of S,, for the number of occurrences
of the considered event in a group of » trials. By a direct analysis of the binomial
probabilities, much easier to carry out than the preceding ones, it follows that
for k =0,1,---,
DA
| P{S.» = k}—»—lae .
Let X be the indicator of the event A in the %-th trial. The number of occur-
rences S, is the sum sy X; of n of these independent and identically distrib-
uted indicators. The first two limit theorems mean that

@ (S_—_ES) — ©0) and € <ﬂ> — N, 1).
n aS,,

Thus we have two limiting processes, (both special and completely specified
forms of normed sums), and two limit laws (more precisely two limit types, see
introduction), a degenerate and a normal one.

Poisson’s limiting process is utterly different. S, . is still a sum Z b1 Xk
of independent and identically distributed indicators but, as n varies, all X, x

change, P(X,x = 1) = :—;and

L£(8n,n) = F(\; 1, 0).

While the two first theorems with their special limiting processes and limit
laws played a central role in the development of Probability theory, Poisson’s
result stood isolated and ignored until about fifteen years ago." We shall see
further that there was a deep reason for its isolation and also that, surprisingly
enough, Poisson laws are, in a sense, more fundamental for the CLP, than the
normal law.

3. The classical CLP and its extension. From the time of Laplace until 1935,
research in the domain of limit laws was centered about the extension to sum-
mands other than indicators of the validity of the two first limit theorems.
This is the period of the classical CLP: Let S, = i1 X be sums of independent
r.’s. Find necessary and sufficient conditions for the LLN and for NC, i.e., con-
ditions under which, respectively,

LLN: & <S———-" ‘n ES") — £(0),
o (8. — ES,

4 In Uspensky’s textbook (1937!) Poisson’s law is mentioned once—in an exercise.
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It is assumed that EX:’s and EX?’s exist. The d.f. not being completely speci-
fied as in the Bernoulli case, the direct Bernoulli-de Moivre approach is of no
avail and general methods are necessary. The first to appear was the method of
moments relative to bounds of d.f. in terms of their moments (Tchebicheff [40],
Markov [37]). The relation

2
P{[Sn_n,ESn|>e}So-(Sn) €>0’

= en?’
together with

n

UZ(Sn) = Z O"2(‘}(k)7

k=1

entails at once a LLN theorem (Tchebicheff-Markov): If
LY ox) -0,
ne k=1

then the LLN holds.
This result can be easily improved (bringing it into closer analogy with
Lyapunov’s theorem): If there exists a constant 6 > 0 such that

1

W};Emk—EXkll“—»o

then the LLN holds.

It contains then a Markov’s LLN condition: LLN holds if £ | X; — EX; |'™ <
C where C is independent of k.

In a much more elaborate form the method of moments gives also a NC the-
orem (Tchebicheff-Markov): If EYY — EZ* for k = 1,2, ---, and £(Z) =
(0, 1), then £(Y.) — 910, 1).

This theorem has been extended to more general limit laws. However the
inherent defects of the method of moments remain. Even if moments of all
orders exist, they do not necessarily determine a unique d.f. A definitive result
in this direction is the Fréchet-Shohat theorem: If EY" — m™® for all k, there exists
a subsequence £(Y,,) which converges to a limit law £ with moments m®. More-
over, if the moment problem is determined, i.e., if the m® determine a unique law,
then the whole sequence £(Y,) converges to L.

To apply the convergence theorem to the NC part of the classical CLP,
one has to assume existence of moments of all orders. In particular, it does not
seem suitable for proving Lyapunov’s theorem. Yet, the simple fruncation idea
(Markov) not only overcomes this seemingly insurmountable obstacle, but also
provides a method per se. It associates with the summands X, “truncated”
r.v.’s Xi ; for k < n and ¢, conveniently chosen real numbers,

Xi = Xiif | Xi | £ ca,
Xe=0 if | Xe| > .
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Nevertheless, the method of moments is too cumbersome and was soon to be
discarded in favor of that of ch.f.’s.

The turning point for the entire CLP is Lyapunov’s introduction of the
method of ch.f.’s. The ch.f.’s were well known and used already by Laplace.
However, the first convergence property, proved but not stated, is due to
Lyapunov [28]: If the ch.f.’s ga(u) of £(Y.,) converge to the ch.f. ¢ of D0, 1),
then £(Y,) — 91(0, 1). From it he deduced the first general NC theorem [28, 29]:
If there exists a number 8§ > 0 such that

s 2B | % — EX [ 0,
g (Sn k=1

then NC holds.

The ch.f. became, in the hands of P. Lévy [21], a general tool, instrumental
in the subsequent tremendous growth of the CLP, with the so called

ContiNulTY THEOREM. If the ch.f.’s g.(u) converge to a function g(u) con-
tinuous at u = 0, then £(Y,) converge to a limit law £ and g(u) s s ch.f.; and
conversely.

The methods of ch.f. and of truncation dominate at present the limit prob-
lems of Probability theory.

In spite of the generality of the above conditions for LLN and NC, they are
not necessary conditions. In fact they are not sharp enough since they assume
the existence of moments of higher order than those which figure in the classical
CLP. However the tools forged proved powerful enough to get its complete
solution. The truncation method yielded to Kolmogorov ([16, 1928) the com-
plete answer to the LLN problem. A “smoothing” device, due to Lyapunov,
provided Lindeberg ([20], 1922) with adequately sharp sufficient conditions;
using ch.f.’s P. Lévy ([22], 1922) proved Lindeberg’s result and Feller ([11], 1935)
showed that, under a natural restriction, these conditions are also necessary .

Solution of the classical CLP.

1. LLN holds if, and only f,

> f dFy(z +EXi) —» 0 and D l, f 2 dF(x + EX;) —> 0
k=1 J|z|>n k=1 N" Jizj<n
forr =12
2. NC holds and max 0.0
r<n a(S,)
id 1

= *(Sx) 12| > o (Sn)

— 0 if, and only if, for every ¢ > 0,

2 dF.(x + EX;) — 0.

An unsatisfactory feature of the classical CLP is the assumption, made at
the start, of existence of certain moments. They are used to avoid, as n — «,
the shift, towards infinite values, of the probability spread by changing the
origin and the scale of values of S, . However there is no specific reason for
these special choices of norming quantities a, and b, except that, historically,
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they appeared as a straightforward extension of Bernoulli and de Moivre ones.
Moreover, even if these moments do not exist, there is no reason not to try
to find norming quantities. (Take X}’s to be independent and identically dis-

. — N 3
tributed as follows: to 4=+/m where m = 1, 2, -- - , attach probabilities .

The second moments are infinite; yet norming S, by ¢\/n log n, we have NC.)
Thus the CLP becomes the problem of the LLN and NC for general normed

S»
sums — — b, .
n

The extended classical NC problem was solved, masterfully and independently,
by Feller ([10], 1935) using ch.f.’s and by P. Levy ([25], 1935) who applied the
method of truncation. The extension of the results to the more general set-up
of the following section is trivial and will be given there. Feller also solved
([11], 1937) the extended LLN problem.

In this new set-up a question arises at once. Gwen the rw.’s Xy, do there
exist numbers which will produce the desired convergence? If so, how can they be
found? This problem is perhaps more difficult than the previous one and is
specifically linked with the limiting process of normed sums. We shall give
here a criterion, due to Feller ([10], 1935), which solves entirely the NC prob-
lem.5 Take as origin of values of the summands their medians and let c.(e) be
the g.1.b. of the 2’s for which D_j—iP(] Xx | > z) < e Then norming quantities
a. and b, such that Q(ﬁ - bn> — 910, 1) and max P{ z(—f by > e} -0

n k<n

‘n

exist if, and only if, for every ¢ > 0,
1

J——— 2
Ciz(e) lz! <en(e) T dFk(m) -

4, Modern CLP. At the same time that the classical CLP neared its happy
end, a new and much wider problem of limit laws appeared and, because the
necessary tools were at hand, was solved almost at once. Various particular
problems, of which the classical CLP is one, contributed to its set-up.

Since the discovery, in the Bernoulli case, of the LLN and NC, the problem
of limit laws has been centered about extensions of their domains of validity
for more and more general normed sums. A similar query about the Poisson
convergence would have provided us with a new problem. As soon as we drop
the restriction that in S,,, = 2 t=1 Xni the r.v.’s X, are indicators, we are
led to the problem of finding conditions under which laws of sums of inde-
pendent r.v.’s will converge to a Poisson law. We have here not only a different
limit law than in the CLP but also a more general limiting process. An utterly
different problem, stated and solved by P. Lévy [21], is the following: find the

5 As for the LLN, norming numbers, such that the LLN holds always exist whatever
be the r.v.’s Xi. Hence, from the point of view of limit types of normed sums, the degen-
erate type is to be considered as a degenerate form of every limit type.
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possible limit laws of normed sums of independent and identically distributed r.w.’s
(the answer is that they are the stable laws). For the first time one does not inquire
about a completely specified limit law but about the class of all limit laws for
a fairly general limiting process. Thus, starting with limit theorems with com-
pletely specified limiting processes and limit laws, after two centuries of struggle
Probability theory got rid of initial restrictions.

The general set-up is now visible. The limiting process is that of sequences of
sums of independent r.v.’s. The queries are about the classes of possible limit
laws and conditions of convergence. However, so general a limit problem is
without- content. In fact, the limiting process is that of arbitrary sequences of
r.v.’s: let {Y,} be any sequence of r.v.’s and take X,; = V,, £X.:) = £(0)
for k > 1. Any law £ belongs to the class of limit laws: take £(¥,) = £. Hence
some restriction is needed. To find a “‘natural” restriction consider the previous
problems. Their common feature is that the limiting process is that of sequences
of sums of independent r.v.’s, the number of summands increasing indefinitely.
If we wish to emphasize this feature, a relatively small number of summands
ought not to have a preponderant role in the determination of the limit laws.
A “natural” restriction is then a requirement of uniform asymptotic negligibility
(uan) of the summands, i.e., for every e > 0, P{ | X, | > €} — 0 uniformly in k.
We come thus to the Modern CLP. Let Sn,, = Dt Xnk, vn — ©, be sums
of rv.’s X, mutually independent for every fixed n, and such that

max P{X,:| > ¢ — 0;
p \

characterize the class {D} of limit laws of the S, and find necessary and sufficient
conditions for convergence to any element of this class.

The solution of this problem is essentially due to the results of investigation
of random functions X (f) with independent increments. Let X(0) = 0, divide
the interval (0, ) into », subintervals (fx—1 , &) with {, = 0, and denote by X,
the increment X (%) — X (ti—). Then X () = X iy X« where X are independent
r.v.’s. If, moreover, X(t) is continuous in probability for every ¢, i.e., if
L{X@t + h) — X))} — £(0) as h — 0, then the X, can be chosen to obey
the uan restriction as », — «. Hence £{X ()} might be expected to belong
to {D}.

The particular case of the modern CLP for summands and limit laws with the
finite second moments was solved by Bawly [1], using Kolmogorov’s char-
acterization of X(t)’s with finite second moments [7]. The general problem,
thanks to a much more general result by P. Lévy ([24], 1934), was solved by
P. Lévy, Khintchine ([20], 1937), Gnedenko ([14], [15], 1938, 1939) and Doeblin
([8], 1938-1939). The method used throughout was that of ch.f.’s. (except in
the case of Doblin who used also the P. Lévy ‘“dispersion” function).

One can avoid an explicit introduction of the considered random function
X(t), limiting oneself to the corresponding (infinitely divisible) laws. For a
very large n, S,,,, is, roughly speaking, a very large number », of very small
(in probability) independent summands. This leads at once to the consideration
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of laws which possess such a property for any », and, first, the infinitely divisible
(i.d.) laws. A law is i.d. if it is a law of sums of an arbitrarily large number of
independent and identically distributed r.v.’s. In other words, f(u) is the ch.f.
of an i.d. law if [f(w)]''™ is a ch.f. for every positive integer n. One might expect i.d.
laws to belong to {D} and, surprisingly enough, it turns out that, because of
the uan, {D} contains only i.d. laws.

.*\_Ne can_now s‘iate the solution of the modern CLP, in three parts. Let
Tra = f . + f+ ) let ¢(z) be any function, defined and non-decreasing in

+e
(=, —0) and (+0, + ), with ¢(— ) = ¢(+ ) = Oand ' do(@) < =,

and let « and 3 be real numbers.
1. The function f(u) is the ch.f. of an i.d. law if, and only if,

2 +00 .
log f(u) = tau — g b + T’I:‘w <e»_m -1- 7 z—txx‘) do(x),
and f(u) determines uniquely «, 8 and $(x) at all the continuity points of the laiter:
(P. Lévy).

Normal laws are obtained for ¢(x) = 0 and Poisson laws correspond to the
¢(z) with one point of increase (z # 0) only. The fundamental role of Poisson
laws appears clearly since, roughly speaking, an i.d. law is the convolution of a
normal law and a continuum of Poisson ones. This role is further emphasized
by the following theorem (Khintchine [20]): A law s i.d. if, and only f, it is
the limit law of sequences of sums of independent Poisson r.v.’s. In other words,
the class of i.d. laws is the closure of laws of finite sums of independent Poisson
r.v.’s.

I1. The class {D} of limit laws of the modern CLP coincides with that of i.d.
laws (P. Lévy-Khintchine).

Together with I this result characterizes in an explicit manner the class {D}.
An immediate question arises (Khintchine). What about the limit laws of normed
sums? The answer is the following (P. Lévy [27]). Let y = log |z|,
Yi(y) = —¢(@) forz < 0, ¢u(y) = ¢(x) forz > Owherey = log |z |. The limit
laws of normed sums, under uan, are the i.d. laws with convex ¥i(y), k = 1, 2.

In particular a Poisson law does not belong to this subclass {Dx} of {D},
hence cannot be obtained as a limit law of normed sums. This brings out the
deep reason for the isolation in which the Poisson law remained as long as the
limiting process was restricted to that.of normed sums.® II shows that, with
respect to the possible limit laws, the limiting process of the modern CLP is
definitely wider than that of the classical CLP and of its extension. However
the entire class {D} can be obtained with normed sums, provided we consider

& A problem, specific for normed sums, arises: given r.v.’s X;, find necessary and suf-
ficient conditions for existence of norming numbers such that the laws of normed sums
would converge to a given element of {Dy} and, if they exist, find them. Feller’s NC cri-
terion solves a particular case of this problem.
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not only limit laws but also “accumulation’ laws (P. Lévy-Khintchine): A law
18 1.d. if, and only if, it is the limit law of a subsequence of normed sums of inde-
pendent and identically distributed r.v.’s.

I and II provided Gnedenko and, independently, Doeblin with the properties
which allowed them to find conditions of convergence, thus completing the
solution of the modern CLP. Let

(X)) = z* dF () — [-/;z|<: z dF(:v):l2

lz] <e
denote a “truncated” variance of X.

II1. Under uan, £(8,,, — bn.) converges, necessarily to an i.d. law “for a con-
venient choice of b,”, if, and only f,

) X Ful@) = ¢@ fors <0, X[ = Ful@] - —6() for z < 0
at the continuity points of ¢(x), and

(i) lim lim inf ) o}(Xap) = 6.
e—=0 = k=1
In particular, since normal laws correspond to ¢(z) = 0, the NC conditions
of Feller and P. Lévy follow: £(8S,.,, — b.) converges to 9U(0, 1) for a convenient
choice of b, and uan holds if, and only if, for every ¢ > 0,

yn

) if]zmdzr,.k(x)—»o and ) 3 eA(Xw) — 1.

k=1 k=1

The first condition shows that among all limit laws under uan, limit norm-
ality corresponds to a sufficiently strong asymptotic negligibility of the sum-
mands, and, more precisely, to

I;Pank' >€)_)0)

or, equivalently, to

P (mkax | Xax) > €) — 0.

Another illuminating characterization of NC (Raikov [39]) follows also from
III. Take for origin of values of summands the truncated first moments

f 2 dF . (x). Then £(S,,, — ba) — 9U0, 1) for a convenient choice of b
|z <1

if, and only if, L1t Xow) — L£(Q).

5. CLP in the case of dependence. Limit problems for sums of dependent
r.v.’s. were considered for the first time by Markov [37], less than fifty years ago.
He extended the first two limit theorems of probability theory to the case of
events linked in chain, i.e., such that P(Ax| A1, - - Asr) = P(Ar]| Ai).
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However the crucial work in this field is the celebrated memoir by S. Bern-
stein ([3], 1927) which has the same historical importance for the dependence
case as that of Lyapunov has for the classical CLP.

Let {X:} be a sequence of r.v.’s. E'X; will denote the conditional expectation

of X, given X;, --+ X4y . Consider the sequence of sums S, = > X, with
k=1
EX, = 0and let o, = 4/ 2 o' (X,).
k=1

BernsTEIN’S NC THEOREM. [f

1 n 1 n
(1) o > sup | E’X | —0, (ii) ey > sup |E'X; — EXi| —0,
n k=1 n k=1

and
1 n
(i) =5 2 sup E' | Xx ' =0,
On k=1
then
@ (S_> = 00, 1).
On

Obviously, if the X;’s are independent, this theorem reduces to Lyapunov’s
with 6 = 1. The method used is still that of ch.f.’s. From this result Bernstein
deduces various particular NC cases and, applying them to Markov chains, ex-
tends the latter’s results.

The unpleasant feature of the above theorem is the use of suprema of condi-
tional expectations and, except when the r.v.’s X are bounded, one cannot ex-
fect these suprema to be finite. On the other hand, the conditional expectations
are r.v.’s and it would be natural to associate their values with the corresponding
probabilities. This can be done and Bernstein’s theorem can be improved in
various directions simultaneously. First it may be stated for sequences of sums
Sn.,—this is trivial; next it extends to 6 > 0 instead of § = 1—this contains
completely Lyapunov’s result but is of secondary interest. Then NC can be re-
placed by asymptotic normality, i.e., by the existence of a sequence of normal
laws 91(0, ¢,) such that the “distance’” between £(S.,,,) and 90, ¢.) would
approach zero as n — «—this is quite simple to get. However, significant im-
provements are obtained on replacing suprema by expectations. Let Fn(z) be
the d.f. of S,,, and G.(z) be that of 91(0, ¢%). Then, taking EX . = 0, we have
the following

NC Tueorem. If (1) 2B | E'Xw| — 0, (i) D B | E'X% — EXo| — 0
and (ii1) there exists a constant 6 > O such that Skl Xk " — 0, then F.(x) —
G.(z) — 0.

This theorem shows that, so far as moments of order higher then the second are
concerned, the NC condition is the same as in the case of independence. In this
last case the theorem is a slight improvement of that of Lyapunov. In 1941 condi-
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tions for LLN and NC were given (Logve [31], [32]) in the frame of the modern
CLP, without assuming the existence of moments; when independence is as-
sumed, they reduce to those given by Feller. Conditions for NC which in the
case of independence, reduce to Lindeberg’s, were then deduced in the particular
case of finite second moments and special cases of NC, including those con-
sidered by S. Bernstein, were obtained.

The whole modern CLP had not been considered until lately (Loéve, [33-35]).
It appeared useful to extend the CLP to an “Asymptotic Central Problem”
(ACP); primarily, to the behavior of £(S,,) as n — . This in turn, led to the
introduction of laws “in a wide sense,” i.e., with possible positive probabilities
for infinite values. To the sequence {£(S,,,)} is associated another conveniently
chosen sequence £, of laws of sums; if £, — Lor £, = £ then the ACP reduce
to the CLP. The investigation uses an extension of the P. Lévy convergence
theorem for ch.f.’s and the modern CLP solutions are obtained as particular
cases. The case of sums of a random number of r.v.’s,” as well as the multidimen-
sional case, are easily treated by the same methods [35].

Many new problems arise in ACP. The foremost corresponds to possible
relaxations of the uan condition. For instance, in the case of independence, the
relaxed condition

max P{| Xu — Yi| > ¢} =0, for every ¢ > 0,
k

where Y1, Y., --- are independent, does not change, essentially, the nature
of the ACP. Yet, as soon as dependence is introduced, the whole outlook changes
and it would be interesting to investigate various new possibilities which thus
arise. On the other hand, stricter than uan conditions are of special interest
when independence is not assumed. The one which seems natural is the following:

max sup P'{| X | > ¢} —» 0,  for every e > 0,
k

where P’(A,:) denotes the conditional probability of the event A, , given
Xn1, -, Xar-. An immediate problem is whether this or an analogous
restriction enables us to find, not only sufficient, but also necessary conditions
for various convergences and various cases of dependence.

II. Tue StrRoNG CENTRAL LiMiT PROBLEM

6. The Bernoulli case and its extension. A sequence {X,} suchthat the corre-
sponding sequence of laws converges does not, in general, determine a r.v.
X which might be considered, in some sense, as the limit of X, . However, if we
define two r.v.’s X and X’ such that P(X s X’) = 0 as equivalent, then, when-

ever £ X, — X,) — £(0) as niz + % — 0, the sequence {X,} determines a

7 H. RoBBINS (Bull. Am. Math. Soc., Vol. 54 (1948), pp. 1151-1161. studied in detail the
case of independent and identically distributed X’s with EX; < « and », , independent
of X’s , with Ei < =.
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unique r.v. X (up to an equivalence)—for which P{| X, — X | > ¢} — 0 for
every € > 0. This X is the limit ¢n probability of X, .

Yet, an observed sequence of values of {X,} need not converge to the ob-
served value of X. For instance, let ¥ be a r.v. uniformly distributed over (0, 1).
Consider the sequence {D,.} of partitions of (0, 1) into n equal subintervals
and to the k-th subinterval of D, attach the indicator X, : of the event when
Y falls within this subinterval. The sequence Xi,; Xs1, Xog; X1, Xs2,

1

X33 --- converges in probability to zero since P(X.. # 0) = oy for
k=1,2,- - ,n,approaches zero as n — . On the other hand, observed values
of Xou's, fork = 1,2, -- -, n, will contain n — 1 zeros and a one, except in cases

of total probability zero. Hence, except in these cases, any observed sequence
will contain infinitely many zeros and infinitely many ones and will not converge.

The Bernoulli theorem means only that f, = -i—" converges in probability to

zero. Borel showed, in a fundamental memoir ([5], 1909), that Bernoulli’s state-
ment is too weak, and, in fact, that observed values of f, converge to zero,
except in cases of total probability zero. Borel’s proof is based upon a direct
analysis of the de Moivre-Laplace approach to NC. Thus a new domain in
probability theory was opened to exploration.

FirsT STRONG LiviT THEOREM. In the Bernoulli case

P{limf, = p} = 1.

This leads to the introduction in probability theory of the notion of almost
sure (a.s.) convergence:

X, 2%, X if P{lim X, = X} = 1,

or, equivalently, if for every ¢ > 0,
P{|Xp — X| > efork =1, or2or---adinf.} > 0asn— o,

If we denote by A, the event | X, — X | > ¢, we see that we are concerned
here with
P = P (realization of infinitely many events 4,) = lim lim P(4,, U ... U

n —=+00 py=»00
Anpy).t From Boole’s inequality
n+vy

P(A,aU - UA4,,) £ 20 P4y

k=n+1

follows, at once, the fundamental BoreL-CanTELLI LEMMA. If D, P(4,) <
then P = 0. This lemma can be extended, using sharper inequalities (Lo&ve [32]).

8 Already Poincaré considered such probabilities in his investigation of ‘‘recurrence’’,
and this, before the notion of completely additive measures was born.
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Now apply the Tchebicheff-Markov inequality
E|X,—-X[

P{{X,—X|>¢ = - r >0,

and the Cantelli criterion follows: if for some r > 0,2, E|X, — X[ < o

a.s.

then X, —5 X.
Applying it, with r = 4, to the Bernoulli case, Cantelli [6] obtained an almost
immediate proof of Borel’s result. An even simpler proof is as follows:

D E|fu — p|* < o since E(f, — p)* = %‘Z, hence fr.2 — p A5, Moreover,

| = fa| S 1% for 0 £ » — n° £ 2n, hence f, — f,2 — 0 in the usual sense,

uniformly in », and the theorem is proved. This last method applies as well to
sequences of dependent events {B,}, which constitute a natural extension of
the Bernoulli case. Let

1y 1
n(n) = - Z P(By), pa(n) = 7 Z P(B: By,
n k=1 n 1<k<Ii<n
8, = pa(n) — pi(n) (in the Bernoulli case 6, = 0!). It is very easy to show that
fa — pi(n) — 0 in probability if, and only if, 8, — 0; this extends the Bernoulli

theorem. Moreover, if n|d,| < C < « then f, — pi(n) N (Loeve [31]),
and Dvoretzky [10] proved that it is enough to have Z i—i"—l < . Thus we

have a simple extension of Borel’s result.

The method used by Borel, while uselessly complicated in view of the result
obtained, is very powerful and, by sharpening it, the law of the iterated logarithm
(Khintchine [18]) follows.

SECOND STRONG LimiT THEOREM. In the Bernoulli case

. S, — ES.,
P {llin sup i@ logTog o) ® — 1} = 1.
where o, = o(S,).

Let us use the following terminology (P. Lévy [26]). A non-decreasing se-
quence {¢,} of positive numbers belongs to the lower class L, if the probability
that S, =< ¢., from some n onwards, is 1, and it belongs to the upper class U
if this probability is 0. The following criterion (Kolmogorov) applies: In the
Bernoulli case {¢.) belongsto L or U, respectively, according as 2 U'Lz dne " = %
or < . Clearly this result contains the Khintchine’s LIT.

7. The general case. The question of domains of validity of the obtained re-
sults arises immediately and thus the SCLP appears in its present form. Let
Sn =i~ X be sums of r.v.’s X;, independent or not. Find conditions for 1° a.s.

convergence of % or, more generally [31] of ;IS—", an T o (SLLN). 2° the law

n
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of the iterated logarithm (LIT) and, more generally, criteria for classifying
sequences {¢n}.

The second problem, in the case of independent summands possesses almost
complete solutions due, respectively, to Kolmogorov [17] and to Feller [13].

a. If sup | X1 | = 0(o./(log log on)*”z) for k < n, then LIT holds.

b. If sup | Xi| = O(o./(log log o,,)"m) for k = n, then the criterion for the
Bernoulli case continues to hold. (Feller also gave sharper criteria).

In the case of dependent summands general results were obtained by P. Lévy
[26] and for Markov chains by Doeblin [7]. The problem belongs (at present)
to the domain of NC; it is complicated and pries deeply into the behavior of
probabilities as n — . Yet, in the case of independence, the dichotomy into
classes L and U is more general as shown by the following property (P. Levy
[26]). If {8S.} is a sequence of consecutive sums of independent rv.’s, and cannot
be reduced by adding constants to an a.s. convergent sequence, then, for any given
sequence {c,} of sure numbers, P(S, > ¢, for an infinity of values of n) = 0
or 1.

The SLLN problem seems easier. Nevertheless it is far from being solved;
we don’t even know necessary and sufficient conditions for the SLLN in the case
of independent summands in terms of individual d.f’s.” The essential tools are,
besides the fundamental Borel-Cantelli lemma, 1° the truncation method to-

gether with the convergence in r-mean: X, L XiHE | X, — X|"—0( > 0),
2° the Kronecker lemma: If Z,, xr/ar 18 convergent, then ai Z,Z;l x — 0

(@nT ). It provides a possibility of transforming problems about the SLLN
into those of a.s. convergence of series of r.v.’s, at least when sufficient con-
ditions are sought for.

In the case of independent summands one can start with the following prop-
erty of series (Lévy [23]): a.s. convergence of DXy s equivalent to convergence
in probability. (It can be shown that this property holds also for certain classes
of dependent summands.) On the other hand, convergence in q.m. (r = 2)
entails convergence in probability. Hence, when EXi < o, taking EX as
the origin of values of Xy, it follows that If Y., ¢*(X,) <, then S, a.s. con-
verges. Kolmogorov proved this result using his celebrated inequality which
considerably strengthens that of Tchebicheff:

0'2 (Sn)

€

P{max | S.| > €} <

k<n
This inequality has been extended by P. Lévy [26], and by Loeve [32] to de-
pendent summands and conditions for a.s. convergence were deduced from it.
If the EX}: are not finite, the truncation method is applied. Put X; = Xj ,
if | X¢] < 1and = 0if | Xx| > 1. Then (Khintchine-Kolmogorov) D, X,

® A first step in this direction is due to U. V. Prokhorov, “On the strong law of large
numbers” (in Russian), Dokl. Ak. Nauk. Vol. 69 (1949), pp. 607-610. See also a paper by
K. L. Chung to appear in the Proceedings of the Second Berkeley Symposium.
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where X, are independent r.v.’s, is a.s. convergent if, and only if, > P(Xa 5% X0,
2 0 (X7), 2o (X)) converge.

It is not difficult to obtain conditions for series of dependent summands.

+e
Let gu(t) = P{| X»| > 8}, £ = f z dF\\(x), where Fly(n) is the conditional

di. of X,, given X1, -+ Xoy. If Z,.f tg.(t) dt < o for an € > 0, then
0

> (X — ) as. converges.
By using Kronecker’s lemma the results above yield immediately sufficient
conditions for the SLLN. Those which come from the last one would in turn

+ean

yield without difficulty the following: Let a.1 » and 9, = f xdF, (z).

I T auat) S ) and [ gy dt < o, thon - 3 (%0 = 99 = 0.
Ay k=1
Take now the particular case: a, = n; and X)’s independent and identically
distributed. From the stated result follows:

1. If EX, = m exist, then - - Z X A8 m and conversely (Kolmogorov).
k=1

2. If0<r<2,r=1,E|X:| < ooandlimf zdF,(x) = 0, then

i Z X 2500 (Marcinkiewicz).
Other conditions for SLLN, in the case of dependence, are known (Lévy [27],
Loegve [32]).

The above result of Kolmogorov is a particular case of the celebrated ergodic
theorem (Birkhoff [3]) which can be considered as a SLLN for a special case of
dependence. Let A, be an event defined on the set {Xi, ,--- X} and
let AYY be an event defined in the same manner on the translated set
{Xt4m, -+ » Xenem). The sequence { Xy} is called stationary if P(AS™) = P(A,)
for every finite set {k;, -- -, k.} and every finite m. The ergodic theorem states

that If the sequence {X,} is stationary and E | Xi| < o, then ;lb Dot X

converges a.s."’

However an unsatisfactory feature of Birkhoff’s theorem (and of its exten-
sions) is that the conditions are not asymptotic—they have to be satisfied for
every n and not for n — <« —while the conclusion is an asymptotic one. Let us
only mention that more satisfactory ones, at least from this point of view,
which contain the previous ones, can be found.

0 For about fifteen years Khintchine, Kolmogorov, Wiener, Yosida and Kakutani,
F. Riesz, worked to simplify the proof of this theorem. It is only lately that its domain
of validity has been extended by Hurewicz, by Halmos, and by Dunford and Miller. See
also a forthcoming paper by the author in the Proceedings of the Second Berkeley Sym-
posium.
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bird’s-eye view above of the SCLP shows that this problem is only in a

tentative stage, perhaps because no adequately powerful methods or no ade-
quately general approach to the problem had been found until now.
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