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Summary. The extremal quotient is defined as the ratio of the largest to the
absolute value of the smallest observation. Its analytical properties for sym-
metrical, continuous and unlimited distributions are obtained from a study of
the auto-quotient defined as the ratio of two non-negative variates with identi-
cal distributions. The relation of the two statistics is established by proving
that, for sufficiently large samples from an initial distribution with median zero,
the largest (or smallest) value may be assumed to be positive (or negative)
and that the extremes are independent. It follows that the distribution and the
probability of the extremal quotient possess certain symmetries, and that its
median is unity. As many moments exist for the extremal quotient as moments
and reciprocal moments exist simultaneously for the initial variate. The loga-
rithm of the extremal quotient is symmetrically distributed. These properties
hold for all continuous symmetrical unlimited variates which possess a mono-
tonically increasing probability function.

For the exponential type, the asymptotic distribution of the extremal quo-
tient can only be expressed by an integral. In this case, no moments exist. For
the Cauchy type, the asymptotic distribution is very simple, and the logarithm
of the extremal quotient has the same distribution as the midrange for initial
distributions of the exponential type.

It is not necessary to consider asymmetrical distributions since, in this case,
for sufficiently large samples, one of the extremes will outweigh the other,
unless the distribution is nearly symmetrical or has rapidly varying tails.

1. The auto-quotient and the extremal quotient. Let x and y be two inde-
pendent non-negative continuous variates, unlimited to the right. Let fi(x) and
f2(y) be the distributions (probability densities), and let Fi(z) and Fi(y) be
the probability functions. Then the joint distribution of the two variates is
their product. The quotient

(1.1) Q= =z/y
is also non-negative and unlimited to the right. Since

d
© = yQ; d—;5=y,

the joint distribution w(y, @) of the quotient @ and the variate y is

(1.2) w(y, Q) = fiyQL(y) -y,
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and the marginal distribution A(Q) of the variate @ alone becomes

(13) M@ = [ vhe@AG) d

The quotient @ possesses a mode if (and only if) fi(xz) possesses a mode.
Assume now that the two variates « and y have the same distribution

(1.4) H@) = f@);  fly) = @)

with the same parameter values. The quotient of two variates with identical
distributions is henceforth called the auto-quotient g, . It may be realized if there
are two independent series of observations taken from the same population and
ordered in time. Each value from the first series is divided by the corresponding
value from the second series. Another realization consists in dividing each value
obtained in one series of independent observations by every other value. A
third realization is obtained by considering two asymmetrical distributions
fi(z) and fo(y) where z = 0,y < 0, and

(1.4 fly) = fi(—2).

The two distributions are called mutually symmetrical, and the auto-quotient
is

¢ = z/(—y).

From the definition of the auto-quotient it follows that the distribution of ¢,
must be the same as the distribution of its reciprocal r = 1/g, . The proof of this
statement is simple. Under the condition (1.4), the distribution A(g,) becomes,
from (1.3)

(L5) Mad = [ wWwai®) dy

The distribution A;(r) of the reciprocal is
1 <0
) = [ ofwms) dp.

If y/r is replaced by z, the distribution of r is
(1.6) h(r) = h(ga).

Thus, the distribution of the auto-quotient of a non-negative unlimited variate
is invariant under a reciprocal transformation.

The shape of the distribution h(g,) and the location of the mode may be ob-
tained from the density of probability h(1/¢,) at the value 1/q, (which differs,
of course, from the distribution b (r) of r = 1/g,). From (1.5) we obtain

W1/ad = [ 0w/adf) dy
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The transformation
Y/ =2 dy = qudz,
leads to

(1.7) h(1/¢s) = gah(ga).

This is a symmetry relation for the distribution of the auto-quotient of a non-
negative unlimited variate. If g, is larger than unity,

(1.8) h(1/qa) > h(ga)-

If the distribution h(g;) is continuous for all values of q,, the derivative of
equation (1.7) with respect to ¢, leads, for ¢, = 1, to

(1.9) K1) = —h(1).

If the distribution h(g,) possesses a unique mode, it must be less than unity.
The moments ¢: are, from (1.5)

¢ = f “ f 1:” ¢ yf(ay)f) dy dg

a=0

- ff %%) L: (29)"§(ga9) A(gay) dy.

=0

The inner integral is the moment y* of order & of the initial variate y, and the
remaining integral is its reciprocal moment y~* of order —k. Thus

(1.10) &=yt =g~

The moments of order k and of order —k of ¢, exist if the moments and the
reciprocal moments of order % for the initial variate exist simultaneously. The
second equation in (1.10) also follows immediately from the invariance of g,
under a reciprocal transformation. Even if the initial distribution possesses all
moments, the mean g, need not exist, and the same holds, of course, for the mean
error and the higher moments. The procedure, usual in economic and meteorolog-
ical statistics, of calculating the quotients of two series of independent posi-
tive variables in order to test whether this ratio is constant may be misleading,
especially if the two series happen to be samples taken from the same population.
The theoretical mean need not exist, and the calculated mean of the observed
quotients need not characterize the relation between the two series.
The probability function H(Q) of the quotient @ obtained from (1.3) is

Q pw
HQ = [ [ witwnt) ay ae

Change of the order of integration leads to

HQ = [ " P @) dy.



526 E. J. GUMBEL AND R. D. KEENEY

The probability function H(q,) of the auto-quotient obtainzd from (1.4) is

1
(L1D) H@ = [ Flay) oF.
Integration by parts leads to
(1.12) H(g) =1 — ¢ fo F@)f(qay) dy.

The boundary condition, H(0) = 0; H(») = 1 can immediately be verified if
the preceding equation is written in the form

(L13) Ha) =1~ " P/ af(?) d.

The probability H(q.) possesses a symmetry relation which is analogous to
(1.7). The probability at the value 1/¢, is, from (1.11),

H(1/g) = [ F/a)i0) dy.
If we introduce the variable of integration
Y = Qa2
we obtain from (1.12)
(L.14) H(ga) = 1 — H(1/ga).

If ¢, is any quantile, such that H(q,) = P, its reciprocal 1/¢, has the probability
1 — P. The first quartile (decile) is the reciprocal of the third quartile, (ninth
decile) and so on.

For ¢, = 1, equation (1.14) leads to

(1.147) H(Q1) =%

The median of the auto-quotient of a positive unlimited variate s unity. From
(1.9) it follows that the median surpasses the mode, if a unique mode exists.

Finally, equation (1.14) may be used to construct a symmetrical distribution.
If a new variate

(1.15) z=1gq

with the probability function H*(2) is iﬁ’oroduced, the symmetry relation (1.14)
becomes

(1.16) H*(z) = 1 — H*(—2).

The logarithm of the auto-quotient of a positive unlimited variate has a sym-
metrical distribution about median zero. The geometric mean of ¢, exists and is
equal to unity.



THE EXTREMAL QUOTIENT 527

These results hold if each observed value of a non-negative unlimited variate
is divided by each other observed value. They do not hold for the quotients of
two specific order statistics because, in general, the fundamental assumption of
independence does no longer hold. However, some consequences for the quotients
of extreme mth values may be deduced.

Consider a symmetrical unlimited variate. Then the distribution ,e(,z)
of the mth smallest value .z, and the distribution ¢, (z.) of the mth largest value
Zn are mutually symmetrical in the sense of (1.4’). Therefore the extremal
quotient

Tm

(1-17) qm = 'm

may be interpreted as an auto-quotient provided that 1) the probability for
Zm t0 be negative, and .z to be positive, may be neglected; 2) the distributions
of the mth smallest and the mth largest values are independent. Under these
conditions the distribution, the moments, and the probability function of the
extremal quotient are obtained from (1.5), (1.10), and (1.11) respectively, if
the initial distribution f(y) is replaced by the distribution of the mth largest
values ¢n(»). The symmetry relations (1.7) and (1.14) and their consequence,
that the median is equal to unity, hold in particular for m = 1, i.e. for the ex-
tremal quotient proper.

The validity of the two conditions has now to be established.

a) Consider a symmetrical distribution f(x) with median zero. Then the
probability that the largest among n observations, x, , is equal to or less than a
certain z, is 1 — F"(z). The probability P that the largest among n values is
positive, i.e. larger than the median, is

(1.18) P=1-2"

If n is sufficiently large, this probability differs from unity by an amount that
can be made as small as we please. Even for relatively small samples, say n = 20,
the probability that the largest value will be positive is of the order 1 — 107°,
Thus, we expect only one largest value in a million samples of size 20 to be nega-
tive. The same argument shows that the smallest value z; may be expected to
be negative. Thus the postulate

A

(1.19) 2,20; =0,

is a very weak restriction upon the sample size. If m is sufficiently small, the
same result holds for the mth extremes.

b) It is known [7] that the joint distribution Y0,(x; , x,) of the extremes taken
from an initial distribution of the exponential type converges, for sufficiently
large samples, toward the product of the asymptotic distribution ¢(x.) of the
largest value, and 1p(x1) of the smallest value. A similar theorem will now be
proven for a general class of continuous distributions.
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Let »x be the mth smallest observation; let z; be the lth largest observation
where m and [ are small compared to n, n being large. Then the joint distribution

W,.(mx, x;) is

n!
(1.20) 0n (T, 21) = (m — DI — DIn —m — !
F)" (F(x) — FG)" "1 — F(2) ™ flu) f().
Now the transformation

(1.21) n(l — F(z;) = §& nF(nx) = n5; 0=<¢=n, 0= 9=,

due to Cramér ([1], p. 371) is used. Then the joint distribution va(€, ) of the
new variates £ and n becomes

~ nl E m—1 B E — n—m-—1 7 -1
&) = = DA—Din —m — ! <n> (1 n > <ﬁ> ’

where m + 1 is small compared to n. As n increases, va(§, 1) converges to

v(§, m) = <(j:‘ie”1; 1) (é’l__l e;)”!>’

so that in the limit £ and 7 are independent. If now the mild restriction is im-
posed that F'(x) be monotonically increasing, (1.21) defines a one to one transfor-
mation, and therefore there must exist an inverse function uniquely defining
w2 as a function of £, and x, as a function of . From the limiting independence
of £ and 7 the limiting independence of the extremes »z and 2, follows at once.

Thus the second condition is fulfilled, and the mth extremal quotient shares
all properties of the auto-quotient. This holds also for initial symmetrical dis-
tributions which do not possess asymptotic distributions of the extremes.

In the following, the two types of initial distributions of an unlimited variate
are considered for which asymptotic distributions of the extremes exist, namely,
the exponential and the Cauchy type. For simplicity, only the extremal quotient
proper, designated by ¢, is studied. The two asymptotic probabilities of the
extremal quotients for these symmetrical distributions are obtained by introduc-
ing the asymptotic distributions of the largest value into the probability func-
tion (1.11) of the auto-quotient.

2. Application to the exponential type. For symmetrical distributions of the
exponential type the asymptotic distribution of the largest value is

2.1) o@) = aexp [—al@— u) — ¢ ),

where « and « are defined in terms of the initial probability F (x) and the initial
distribution f(x) by

(2.2) Fu)=1—1/n; a = nf(u),

n being the sample size. The distribution (2.1) will now be simplified by intro-
ducing a new parameter \ defined by

2.3) e =N > 0.
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To see the meaning of A, consider Laplace’s first distribution, then the so
called logistic [6], and the normal distributions, all of which are of the exponential
type. In the first two cases we obtain, from (2.2), after some calculations,

24) a=1, u=Ilgn—lg2; a=1-—1/n, u=1Ign —1),

whereas for the normal distribution, we have asymptotically
a=u=421g (n/N/2x)

and

24) A = n¥/(2r).

For these distributions, and interpreted in this sense, A is of the order of the
sample size or its square.

From (2.3) and (2.1) the distribution ¢(x) and the probability function ®(z)
are
(2.5) o) = o\ exp [—ax — A “; ®(x) = exp [—re ¥
In order to fulfill the condition (1.19), namely ®(0) = 0, the distribution ¢(z)
must be truncated at x = 0. This leads to the truncated distribution ¢,(x) and
the truncated probability ®;(x) where
al exp [—ar — Ne ] exp [—Ae™] — ¢

1 — e ’ 1 — e

The asymptotic probability function Ha(q) for the extremal quotient of a sym-
metrical variate of the exponential type is now obtained from (1.11), if y, f(y),

and F(y), are replaced by z, ¢,(x) and &,(x), respectively, and the index a is
dropped. Consequently, from (2.6),

(2-6) <Pt($) = ‘bt(x) =

1 ® —axr —agqr
H)\(q) = —(1—_——6:{5-2'£ ok exXp [—ax — Ae — Ae q] dx

—A

- (1—9——6_)‘)2 f al exp [—-ax b )\e_“] dz.
- )
The transformation
e = gz ae “dx = —dz
leads to
1 ! —N\(z+29) 6—‘1\

This probability of the extremal quotient for initial symmetrical distributions
of the exponential type is not truely asymptotic since the parameter A depends
upon 7. (See Addendum).

Unfortunately, the expression (2.7) cannot be integrated. Therefore the prob-
ability function has to be studied in an analytic way. For this purpose we first
recall the general properties

H@O) =0; HQ) =13  H(»)=1,
valid for any value of A. Furthermore, for any A, we have the symmetry rela-
tion (1.14). These properties can be verified at once from (2.7).
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The numerical values of H\(q) can easily be calculated for ¢ = % and ¢ = 2.
Consider a value of A, say of the order 6. Then formula (2.7) may be written

1
H\(2) = / e D gy
0
(2.8) .
= /" f DT U de
0

If we introduce

VRG+D = 55 VR = s,

the probability H»(2) becomes a difference of two normal probability integrals,

H\@) = Va7 [1 —F <\/§> - <1 - F (3 \g))]

where F stands for the normal probability function.
The second expression may be neglected compared to the first one for A = 4,
whence

(2.9) H\2) = \/’_‘ &t [ et gt
2 ViT3

The symmetry relation (1.14) leads to the knowledge of Hx(3). Thus the three
probabilities Hy(3), H(1), and H\(2) are known.

To see the influence of A on H)(2), we use a method due to R. D. Gordon [4].
This author constders a function R, defined by

(2.1()) Rz — 622/2/ e—52/2 dt’ x > 0’
and proves that
dR d’R dR
It follows that
4 (zR) > 0.
dx

If we substitutey/)/2 for «, this inequality may be written, from (2.9) and (2.10),

d N ®
— <\/é e f e mz,dt) = 22\ LLING) > 0.
d i 2 VT2 dn

2

Consequently H»(2) increases with A whereas, from (1.14), the probability
H\(%) decreases with \. The following table gives the probabilities Hx(2) and
Hy(%), (2.9) and their differences

(2.11) P\(2) = H\(2) — H\(3).
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Asymptotic probabilities of the extremal quotient for symmetrical distributions of
the exponential type

Parameter Probabilities (2.9), (1.14) i Probability (2.11)
A H\(2) H\(3) Pr(2)
8 .84376 . 15624 .068752
18 91377 .08623 .82754
32 .9406061 .05339 .89322
50 .96438 .03562 .92876
72 .97427 .02573 .94854
98 .98087 .01913 .96174

The approximative shape of Hx(g) is traced, for A = 8,...,98,and 3 < ¢ < 2
in Graph (1). Since we know from (1.16) that lg ¢ has a symmetrical distribu-
tion, we use a logarithmically normal probability paper where ¢ is plotted on
the abscissa in a logarithmic scale, and H\(q) is plotted on the ordinate in a
normal probability scale. The probability Py(2) for any value of ¢ to be con-
tained in the interval 3 < ¢ < 2 increases with A, i.e., with the sample size, and
the distribution of the extremal quotient contracts.

1) ASYMPTOTIC PROBABILITY OF THE EXTREMAL
QUOTIENT FOR THE EXPONENTIAL TYPE
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EXTREMAL QUOTIENT C’

If the initial distribution is unknown, the parameter X\ has to be estimated
from the observed extremal quotients. Equation (2.11) may be used for this
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purpose. We calculate the observed relative frequency P»(2) of extremal quo-
tients contained between ¢ = % and ¢ = 2, and substitute it for the probability
P,(2). To facilitate this estimate of A\, we trace P(2) against A in graph (2).
The probability Px(2) is traced on the ordinate in linear scale, and the parameter
) is traced on the abscissa in inverse scale. Thus ) is easily estimated from the
observed relative frequency Pi(2).

2) ESTIMATION OF THE PARAMETER A

PROBABILITY PA(Z)

1
“
12 n .10 .09 .08 .07 .06 .05 .04 .03 .02 .01 (o]
L N L . 2 L ) L
.95
.90
.85
80
75
.70+
.65 -.65
T T Tt T—t—r—t=rrr T TTTT T
8 9 10 15 20 30 40 50 100 200 ©

PARAMETER A

The distribution hx(g) of the extremal quotient obtained by differentiating
the probability function (2.7) with respect to ¢ is

1 f ! 2 —N(z+29) g

S S— -1 .
(l_e_)‘)zoke 2(—1g 2) dz

The symmetry relation (1.7) is easily verified. We now investigate the boundary
value h,(0) and prove that

(2.13) lim m(g) = m(0).

(2.12) (g =

This is not obvious, since z* becomes indeterminate if both z and ¢ vanish. For
the proof of (2.13), consider the integral

1
(2.14) I=2 f e M(=1gz) dz
0
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or
(2.15) I=(1—c¢Migh—y+ e lgh — e(=N).
The last term, the exponential integral, is positive. The value of hy(0) is thus,
from (2.12)
e Mg A — v — ei(=N)
(1 — e™™)2 ’

(2.16) m0) =

The difference
A= (1 =Nt — o)

becomes, from (2.12), (2.15) and (2.16), by the use of the mean value theorem
and after expansion

A = fQ0) fol (€™ — ¢ dz

= (—=1)"N < 1 )
= —1
) ; v! v+ Dg+1 ’
where f(\) is a positive function. Since the series is absolutely convergent, the
difference A vanishes for ¢ = 0, and the density of probability for ¢ = 0 is given
by (2.16). The condition %,(0) = 0, valid for any distribution, is met provided
that

(2.17) A > 1.794

By virtue of (2.4) this is a (weak) condition concerning the sample size. From
(2.16) it follows that 2x(0) does not vanish although its numerical value is very
small.

The existence of at least one mode follows from the fact that the distribution
ha(g) is continuous, very small for ¢ = 0, and vanishes for ¢ = . Equation
(1.9) proves that any mode is inferior to unity. The distribution contracts for
increasing values of the parameter. Therefore the mode approaches the median
with increasing sample size.

Since the distributions of the exponential type do not possess reciprocal mo-
ments it follows from (1.10) that the distribution k,(g) does not possess moments.
The mean extremal quotient § diverges. Because the logarithmically normal
distribution used in graph (1) as first approximation to the distribution h\(q)
possesses all moments, the distribution A3(¢) has a much longer tail than the
logarithmically normal one.

3. Application to the Cauchy type. For the exponential type, the asymptotic
distribution of the extremal quotient can only be expressed in the form of an
integral containing a parameter A which is a function of the sample size. For the
Cauchy type, to be defined in the following, the asymptotic distribution will
turn out to be very simple.
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A distribution of a variate x = 1 was said [5] to be of the Pareto type if
(3.1) lim 21 — F(x)) = 4; k>0, A4 >0.

We now say that a variate is of the Cauchy type if it is unlimited, continuous,
subject to (3.1), and symmetrical about zero. Distributions of the Pareto and
the Cauchy type do not possess moments of an order equal to or larger than k.
However, not all unlimited symmetrical distributions with a finite number of
moments are of the Cauchy type.

The simplest example of such a distribution is the Cauchy distribution itself

1 1

(3.2) flx) = m; F) = 3 + - arc tg z,
which possesses no moments. For large absolute values of «, the usual expansion
leads to

FG) = 1 — % 4 0™ F(—2) = L — o).
T™r Tr

If the factors O(z™%) are neglected, the parameters A and & in (3.1) are
(3.2%) A=7 =1

For the Cauchy type, the asymptotic probability II(z) and distribution «(z)
of the largest value © = x, established by Fréchet [3], R. A. Fisher [2] and R. von
Mises [8] are

(33) () = exp [—(;—‘)k]; m(z) = % (;) " ow [_ (§>k]

where u is defined by (2.2).

The condition (1.19) is fulfilled for any sample size which is so large that the
asymptotic distribution of the extremes may be used. The asymptotic prob-
ability H(q) of the extremal quotient for the Cauchy type is obtained from (1.11),
if y, f(y) and F(y) are replaced by z, =(z), and II(x), respectively, where the
indices n and a are omitted. Consequently, from (3.3),

© k+1
m = [ (ﬁ) It g
0

x

From the transformation

k ! k41
<E£> . F (?E> iz = de,
T U \r

the asymptotic probability Hx(g) and the asymptotic distribution A:(g) of the
extremal quotient become simply

B qk . _ kg™
(3.4) Hi(g) = hi(q) T+ o

= 0.
1+qk7 q—
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Evidently, the symmetry relations (1.7) and (1.14) are fulfilled for any k. The
graphs (3) and (4) show the distribution hi(¢) and the probability H(q) for
the most interesting cases k = 1, 2, 3. From

ilgd%c_(ﬂ_) = 1g ¢(1 — Hi(qg)

it follows: For k increasing, the probability Hi(q) decreases for ¢ < 1, and in-
creases for ¢ > 1. The distribution coniracts with increasing values of the parameter
k as shown in the graphs (3) and (4). The more moments that exist in the initial
distribution, the more concentrated is the distribution of the extremal quotient.

1.0 — 1.0
"OT 90
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A
.8 "“‘ > .60
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Q

3) DISTRIBUTIONS OF THE EXTREMAL
QUOTIENT FOR THE CAUCHY TYPE

_——_ Pe—

e —

EXTREMAL QUOTIENT ¢1

The density of probability
h(l) = k/4
of the median obtained from (3.4) and (1.14’) increases with k. The mode § of
the extremal quotient is obtained from (3.4). For £ > 1 this leads to

G k-1
(3.5) =<l
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For £ = 1 no mode exists, and the distribution diminishes with ¢q. The larger
k, the smaller is the distance from the median to the mode, and hence, the
smaller the asymmetry. The density of probability of the mode increases with
k, and the probability

(3.6) Hy(q) = 3(1 = 1/k)

approaches 3. The distribution (3.4) belongs to the Pareto type and has no
moments of an order equal to or greater than .

In N samples of sufficiently large size n, the largest quotient g% , defined in
the same way as u in equation (2.2), obtained from (3.4)

(3.7) b =N-—-1

increases as a root of the number of samples, i.e. very quickly. The higher the
order of the highest moments existing, the smaller will the expected largest quo-
tient be.

From (3.4) and the symmetry (1.14) we obtain

3.8) Hi(q) — Hi(1/q) = 1 — 2/(1 + ¢°).

The larger k, the larger is the percentage of the observations contained in the
interval 1/q to q.

For a systematic estimate of k, the transformation (1.15) is used. Formula
(3.4) leads to the probability H*(z) and the distribution A*(z) where

I W) = ke *
1+ ek’ - (1 + e-kz)2’

The logarithm of the extremal quotient for initial distributions of the Cauchy
type (where no moments of an order equaling or exceeding k exist) has the
logistic distribution, [6], as the midrange v = z, + x; for distributions of the
exponential type (where all moments exist). The logarithm of the extremal
quotient plotted on logistic probability paper should be scattered around a
straight line.

The order k of the lowest moment which diverges is obtained from the vari-
ance o> of the distribution A*(z) which is [6]

(3.9) H*() =

(3.10) or =

For the estimate of % from (3.10), o2 is replaced by the estimate s obtained from

1 T x
2 2 n,v
(3'11) S = N -1 ; 1g —xl,v‘

For the Cauchy distribution itself, ¥ = 1, and the probability and the dis-
tribution of the extremal quotient

Hg) = ¢/ +q; h@=Q0+¢9"
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are similar to the initial distribution.

The asymptotic distribution of the extremal quotient for initial distributions
of the Cauchy type contains one parameter only, the order of the lowest diverg-
ing moment in the initial distribution. All other traces of the initial distribution
have disappeared.

4. Comparison of the extremal properties for the two types of initial distribu-
tions. Assume that the initial distribution is symmetrical, unlimited, and pos-
sesses an asymptotic distribution of the extremes. This is not always fulfilled.
All moments may exist, and yet the distribution may not belong to the expo-
nential type. No moments may exist, and yet the distribution may not belong
to the Cauchy type. If the assumption holds, the initial distribution belongs
either to the Cauchy, or to the exponential type.

We take N samples of size n, and estimate the median X of the population
from the central value m of the N central values of the samples. Let X;, and
Xaw (@ =1,2, --- N) be the two extremes. If it happens for any v that

Xio>mor X,, <m

the sample is too small, and its size has to be increased. The central value ¢ of
the observed extremal quotients ¢, = (X., — m)/(m — Xi,) must be near
unity.

If the initial distribution is of the exponential type, all moments in the popula-
tion exist, and the midrange has the logistic distribution. If the initial distribu-
tion is of the Cauchy type, no moments of an order greater than k exist, and the
logarithm of the extremal quotient has the logistic distribution. The order k
can be estimated from the variance (3.11). If all moments in the population di-
verge, the calculation of the observed moments is futile since they do not charac-
terize the population.

Addendum. The referee of this paper has suggested the following method for
obtaining an asymptotic distribution of the extremal quotient for the exponen-
tial type. For large values of X, formula (2.7) becomes, approximately,

1
H\(q) _é ¢ I

It

Let
Ae = y.'

Hy(g) = fo A exp {— y [1 + <§')""]} dy.

The further transformation

Then

et =\ g—1 =t/Ig\,
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leads to the probability H*(¢) of the variate ¢
20 = [ expl— ylt + )
whence asymptotically for A —
H*(Y) = fow exp{—y(1l + ¢} dy

=1/1 + 7).

Therefore the logistic distribution holds at the same time for both initial types,
using the transformation ¢ = au(g — 1) for the exponential type, and the loga-
rithmic transformation for the Cauchy type.
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