THE PROBLEM OF THE GREATER MEAN

By Raguu Ray BaHADUR AND HERBERT ROBBINS!
University of North Carolina

1. Introduction and summary. Let 7, 72 be normal populations with means
my, me respectively and a common variance o¢°, the parameter point
w = (m1, myic) which characterizes the two populations being unknown, and
let @ be an arbitrary given set of possible points w. Random samples of fixed
sizes M1, ng are drawn from m;, m, respectively, giving the combined sample
point v = (Zu, Tz, ***, Tin, ; T, Taz, '+ + , Tan,). For reasons which will be
made clear later in connection with practical examples, any function f(v) such
that 0 < f(v) < 1 is called a decision funciion, and for any such f(v) the risk
function is defined to be

M r(f| @) = max [mi, my] — mE[f|e] — mE[l — f|w] 20,

where E denotes the expectation operator. A decision function f(») is said to be
(a) uniformly better than f(v) if »(f|w) < r(f|w) for all w in Q, the strict in-
equality holding for at least one w, (b) admissible if no decision function is
uniformly better than f(»), and (c) menimaz if

sup [r(f| )l = irflf sup r(f | @I

The “problem of the greater mean” is, for any given ©, to determine the mini-
max decision functions, particularly those which are also admissible. Special
interest attaches to the case in which there exists a unique minimax decision
function f(v) (in the sense that if f(») is any minimax decision function then
f(v) = f(v) for almost every » in the sample space); such an f(v) is automatically
admissible.

The problem of the greater mean is, of course, a special problem in Wald’s
general theory of statistical decision functions [1]. Our results will, however, be
derived by very simple direct methods which make no use of Wald’s general
theorems.

We cite without proofs a few examples in order to show how strongly the
solution of the problem of the greater mean depends on the structure of Q. In
each case the minimax decision function is a function only of the two sample
means I, &2 .

(i) Let @ consist of the two points (a,.b: o) and (b, a: ¢), with @ < b. Then

{1 ifn,il — Moy > (N1 — N a+b 2
@) ) = ( e +B)/2,

{0 otherwise,

is the unique minimax decision function.

1 This work was supported in part by the Office of Naval Research.
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(ii) Let ©” consist of the two points (¢ + &, c: ¢) and (¢ — h, c: ¢), with b > 0.
Then

1if & > c,
@) fo) = {

0 otherwise,
is the unique minimax decision function.

(iii) Let Q"' consist of the three points (3, —3:1), (3, $:1), ( —$%,—%:1), and
let n; = ny = n. Then

Lif e72™ 4 ¢ <,
4 - ) = {

0 otherwise,

where X is a certain definite constant, is the unique minimax decision function.

The parameter spaces of two or three points specified in these examples are
rather trivial, but in fact the corresponding decision functions (2), (3), (4) re-
main the unique minimax solutions of the decision problem with respect to
much more general parameter spaces. Thus, for example, it is clear that f*(v)
will remain the unique minimax decision function with respect to any @ which
contains @' and is such that

sup [r(f* | w)] = sup [r(f* | @)].

wed

Corresponding remarks apply to f2(v) and f**(v).
When n; = n,, (2) reduces to

(5) o) = {

This decision function is of particular interest when both the means m, , m. are
unknown. It will be shown that whether or not n; = n,, f'(») is the unique
minimax decision function under certain conditions on € which are likely to
hold in practice, at least when both 7; and 7, are sufficiently large (Theorem 3).
Likewise, fo(v), which is the analogue of f°(v) when one of the means (m,) is
known exactly, is apt to be the unique minimax decision function in such cases,
at least when n; is sufficiently large (Theorem 4). These results on f°(v) and
) form the main results of the present paper.

So much by way of a general summary. We shall now give a practical il-
lustration (another is given in Section 3) to show how the problem of the greater
mean arises in applications.

Suppose that a consumer requires a ‘certain number of manufactured articles
which can be supplied at the same cost by each of two sources m and . The
quality of an article is measured by a numerical characteristic z, and it is known
that in the product of =;, z is normally distributed with mean m; and variance
o’, but the values of these parameters are unknown. The consumer has ob-
tained a random sample of n; and n, articles from m; and m; respectively, and
has found the values of = to be (u, T2, ***, Tiny § Tar, T2, *** 5 Tony) = U.
What is the best way of ordering a total of N articles from the two sources?

1if & > %,

0 otherwise.
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The usual statistical theory, which confines itself to estimating the unknown
parameters and to testing hypotheses of the form Hy(m; = m,), has at best an
indirect bearing on the problem at hand. We therefore adopt Wald’s point of
view and investigate the consequences of any given course of action. If the
consumer orders fN articles from m and (1 — f)N from =, where 0 < f < 1,
then the expectation of the sum of the z-values in the articles he obtains will
be N(myf + me(l — f)). The maximum possible value of this quantity is N
max [m1, me), and the “loss” per article which he sustains may therefore be
taken as

W(w)f) = max [ml ) m2] - mlf - m2(1 _f) Z 07

where w = (m;, my : ¢) is the true parameter point.

The consumer wants to choose f so as to make W as small as possible. If
he knew m; to be greater, or to be less, than m,, then by choosing f = 1 or 0
respectively he could make W = 0. But since he does not know which m; is
the greater he will presumably choose f as some function of the sample point v.
Suppose, therefore, that a ‘“decision function” f(v), such that 0 < f(v) < 1 but
not necessarily taking on only the values 0 and 1, is defined for all points » in
the sample space and that the consumer sets f = f(»).” In repeated applica-
tions of this procedure, the “risk” or expected loss (a double expectation is in-
volved: the expected loss for a given f and the expected value of f in using the
decision function f(v)) per article is given by (1), and the consumer will try to
find an f(v) which minimizes this risk. Since the value of the risk depends on
it is necessary to specify which values of w are to be regarded as possible in
the given problem; let the set of all such w be denoted by Q. If the consumer
agrees to adopt the ‘“conservative” criterion of minimizing the maximum pos-
sible risk, then the statistician’s problem is to find the minimax decision func-
tions in the sense defined above. We have given the solutions of this problem
for certain types of parameter spaces. The reader will observe that each of the
minimax decision functions (2), (3), (4) was of the ““all or nothing” type, with
values 0 and 1 only. (Whether this remains true for every @ we do not know.)
By using one of these decision functions in a given instance one arrives at either
the best possible decision or the worst. The attitudes of doubt sometimes as-
sociated with the non-rejection of the hypothesis Ho(m; = ms) are therefore

2 One might say that the consumer should choose f in the light of what he can infer from
v about the m; . But this formulation as a problem in ordinary statistical inference (estima-
tion and testing) is not relevant and may be misleading. For example, a plausible f(v),
based on the idea that the problem is one of testing hypotheses, is as follows: ‘“Perform the
two-tailed t test of Ho(mi = m,) at the five per cent level. If H,is rejected set f = O or 1
according as 7, is less than or greater than &, . If H,is not rejected set f = }.”” Another
f(@), hased on the theory of estimation, according to which the #; are the ‘‘best’’ estimates
of the m; , is as follows: “Set f = 0 or 1 according as #, is less than or greater than Z,.”
Actually, the latter procedure is, from the remarks above concerning (5), the ‘“best’” in
a certain definite sense and under certain conditions, but this fact does not follow from the
usual theory of estimation.
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irrelevant to the problem of the greater mean in the examples cited. (Cf. foot-
note 2; also Example 1 in Section 3.)

The risk function (1) is but one of a general class R of risk functions, to be
defined in Section 2, which are associated with the problem of the greater mean.
The most important members of R are (1) and

(6) 7(f | w) = P(incorrect decision using f(v) | w),

where “m; < my” and “m; > m.’”’ are the two possible decisions. The risk func-
tion (6) is relevant to applications of a purely ‘“‘scientific’’ nature in which the
statistician is asked merely to give his opinion as to which population has
the greater mean. Although the problem of constructing a suitable decision
function for (6) is akin in spirit to the problems considered in the now classical
Neyman-Pearson theory of statistical tests, no satisfactory solutions seem to
be available. It is easy to see, however, that (1) and (6) are quite similar. Of
course, in the case of (1) a decision function f(v) may take on any value be-
tween 0 and 1 inclusive, while for (6) we allow only functions which take on
only the values 0 and 1, corresponding respectively to the decisions “m; < my”’
and “m; > my”. We then have for any such f(v),

P(fw) = 1|w) = Elf | w] if my < my,
(6") F(flw) = {P(f@) = 0]w) = B[l — f|a] if my > my,

0 if my = my
and by comparison with (1) we see that 7(f | w) = |m — mq | 7(f | @) for all w?

Now, in the three examples (i), (ii), (iii) cited above the unique minimax decision
functions happen to take on only the values 0 and 1, and | m, — m, | is constant
on each of the respective parameter sets. It follows that (2), (3), (4) are also
the unique minimax decision functions relative to (6) and to @, @, @'’ respec-
tively. The remarks above following Example (iii) also remain valid for the
risk function (6).

We conclude this section with a remark on the methods of this paper. Any
decision function relevant to (6) is equivalent to a test of the hypothesis Ho(m; <
ms) against the alternative Hi(m; > m,), the region {v:f(v) = 1} being the
“critical region.” Hence the Neyman-Pearson probability ratio method can be
used to obtain the unique minimax decision function with respect to (6) and
an  consisting of two (or more) points, and the result carries over to more
general types of @ in the manner already,indicated. It turns out, however, that
the dominant properties of the probability ratio tests are not confined to
the class of tests alone, but extend to the class of all functions f(v) such that
0 < f(v) < 1. This result (Theorem 1) enables us to solve the problem of the
greater mean for the risk function (1) as well as for (6). The reader who is inter-
ested in applications may turn to Section 3.

2. Theorems. We require the following slight generalization of a well-known
result of Neyman and Pearson [2].
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THEOREM 1. Let ¢(v), ¢1(v), 2(v), « « -, ¢,(v) be summable functions defined on
a measure space E with points v and measure u, u(E) < o, let ¢;, -+, ¢ be
arbitrary constants, and let A < E be such that
(1) e A tmplies ¢ (v) > ; cipi(v),
) .
velE — A implies p(v) < Z cpi(v).
1
Set
() [ oedu = a. (=1, ,7),
and let f(v) be any measurable function such that
9) 0<f@) <1
and such that
(10) f féidu = a; (2=1,e--,7).
E
Then
< .
(11) fxftﬁ dp < _/A¢dﬂ
Proor. [ fpdu= [ fodut [ sodu
<[soaut [ 1(3 o) by (), (7,
A E—A 1
=ff¢du+2c.-f foéi dp
A 1 E—A
= f fé du + Zm[[ fos du — f fdh'dﬂ]
A 1 E A
= f fodu + > e [a.--— f fb: du] by (10),
A 1 A
= f fédu + 20 e [f 1 = e du] by (8),
A 1 A ‘
=[oa—[a-noau+ [ - (3 ens)an
A A A 1
= [oa+ [ a-p(Zon— o)
A A 1
< [ oau by (9), (7).
A
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Norte 1. If the condition

(12) ! {vkﬁ(v) = ? Ci¢i(v)} =0
holds, then in order that the equality hold in (11) 4t s necessary and sufficient that
(13) J) = xa() a.e. (1),

where x4(v) s the characteristic function of the set A,

1 ifved,
xa(v) = .
0 ifveE — A.

Proor. The sufficiency is obvious. To prove the necessity we observe from the
proof of Theorem 1 that for equality to hold in (11) it is necessary that

) <¢ () — ‘l; c;¢z-(v)> =0 ae. (u)in E—A,
and that

1- f(v))<¢(v) - ; cz¢i(v)> =0 a.e. (u) in A4.
These relations and (12) imply (13).
Nortg 2. If relations (10) are replaced by

10) | fpidu < a G =17,

and if each of the constants c; is non-negative, then Theorem 1 and Note 1 remain
valid.

Theorem 1 has applications to a number of decision problems of a certain
type. In the present paper we consider only the ‘“problem of the greater mean”
for two normal populations with a common variance o°, where at least one of
the means m; , m. is unknown. The following assumptions and definitions will
be valid henceforth.

(A) Ey is the N = n; + mn, dimensional sample space of points
v = (Xu, Tiz, ***, Tiny j T, Loz, -, Tom,). A measurable function f(v) de-
fined for all v in Ey is a decision function if 0 < f(v) < 1. fi(v) = f,(v) means
filw) = fo(v) for almost every v in Ey .

(B) Q1is a given set of points w = (my,, ms : ¢), ¢ > 0. Given w in @, the prob-
ability measure in Ey is that generated by the distribution function

2 ng

K@|w) = H H G [(xsj — mi)/ol,

i=1 j=1

where

G(x) = (21r)—;‘[z ¢ o,
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Given any function ¢ = ¢(v) for which the integral exists we write

By |al = [ 60) K@ |w).
(C) Let v(w) = (g1, g2) be a function defined for all w in @, with values in
E,, and such that
(14) m; < m; implies ¢; < g; (Z,7 =1,2).
Given p, 0 < p < 1, we define
' W(w, p) = max g, gl — gip — ga(1 — p),
and given a decision function f(v) we define the risk function
r(flw) = E[W(w, f)] ] = W(w, E[f | «])
= max [g1, o] — GE[f|w] — gE[l — f]w].

The class of risk functions (15) corresponding to all functions v (w) which satisfy
(14) is denoted by R. (The two most important members of R are (1), with

I

(15)

7("") = (ml b} m2))
and (6), with
(O, 1) if my < my )
Y(w) =49(1,0) if m > m,,
(0, 0) if m; = my.

The risk functions (1) and (6) appear in the examples in Section 3.) Throughout
this section r(f | w) will denote a fixed but arbitrary member of R. We shall use
the notations

h(w) = ’91—!]2,,

dw) = (l + l>—* (. — ma) /o,

7y Mo
ng
5o = it 3y G =1,2).
Jj=1

THEOREM 2. Let w1 = (my, mp : o) and wo = (uy1, u2 : o) be two parameter points
such that

dw) <0, dlw) >0, hle)h(w) >0.
For any A\, —o < N < o, let fu(v) be the characteristic function of the set
(16) A)\ = {v:nl(ul bl ml)il + ng(ﬂ2 - mg)l_'z > )\0’}.

Then
(i) Corresponding to any decision function f(v), there exists a X such that

rihlw) =r(fle),  r(h]w) < r(f|w);
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the inequality s strict unless f(v) = fi(v).
(i) Given any X, if f(v) is a decision function such that

r(f|w) < r{f|w) (t=12),
then

f)

(iii) There exists a unique ¢ such that

an r(fo | 1) = r(fe | w2) = B say,
and for any decision function f(v) we have

(18) B < max [r(f| w), r(f | @)];

the inequality ts strict unless f(v) = f.(v). It follows that f.(v) s the unique minimaz
deciston function corresponding to the two-point parameter space @ = (w1, ws).

Proor.’ (a) Let ¢(v), ¢:(v) be the joint frequency functions of the sample
point v corresponding to the parameter points w; , w; respectively. It is readily
seen that for any A there exists a unique constant c;(A\), 0 < ¢;(A\) < o, such
that

A@).

Ay = {v:¢(v) > ci(v)}
(ei(— ) = 0, ci(c) = o). Moreover, since w; # w;,
wl{v:ip(®) = api(v)} = 0.

It follows from Theorem 1, Note 2, that if f(v) is any decision function such
that

Elf|w] < E[fx| @],
then
Elf | w] < E[fy ] wal,

and the strict inequality holds unless f(v) = fi(v).
(b) It is clear from the definition (16) that for any fixed parameter point w
the function

Elfi|w] = P(4) | w)

is continuous and strictly decreasing from 1 to 0 as A varies from — o to 4 .
(¢) For any decision function f(v) and any parameter point @ we have by (C),

r(f!w) = max [g1, go] — @E[f | 0] — g:E[1 — f] ).
Hence 7
r(fwn) = h(w)E[f | e, h(w) > 0,

(19)
r(f|ws) = h(w)E[l — f|wl, h(ws) > 0.

4 Theorem 2 (as also Example (iii) of Section 1) could be derived from Wald’s general
results on the completeness of the class of Bayes solutions of statistical decision problems.
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Since for any decision function f(»), 0 < E[f | @] < 1, we can by (b) choose A
so that

(20) Elfs| @] = E[f]wl,
and by (a) it follows that unless f(v) = fi(v),
(21) E[f\| wa] > E[f | we).

(1). Follows from (19), (20) and (21).
(ii). Follows from (19) and (a).
(iii). (17) follows from (19) and (b). Then (18) follows from (17) and (ii).

Theorem 2 provides the solution of any problem of the greater mean when Q
consists of just two points w; , we . For, the problem is trivial unless d(w;) d(we) <
0 and h(w))h(ws) > 0, and in the non-trivial case the unique minimax decision
function is f.(v) defined by (17). Moreover, it follows at once from the defini-
tion that if f(v) is the unique minimax decision function with respect to some
parameter set &, then it remains so with respect to any @ such that @ =2 @ and

sup [r(f|w)] = sup [r(f|w)].
wed weld

By taking sets & which consist of two points, Theorem 2 can therefore be used
to obtain sufficient conditions for an f(») = f.(v) to be the unique minimax
decision function with respect to a quite general . (It is clear that results
analogous to Theorem 2(iii) but pertaining to more than two parameter points
can be derived from Theorem 1, and that these results can be exploited in a
similar way. An instance of this procedure where & consists of three points will
be given at the end of this section.)

The theorems which follow exploit Theorem 2 in this way to obtain conditions
on @ under which the decision functions f°(v) and f1(v) defined by (5) and (3)
are minimax. We consider f°(v) first. From (C) we have, after a simple compu-
tation,

(22) r(f°|w) = h(w)-G(— |d(w) | ).

TuEOREM 3. Suppose that there exist sequences {wi}, {wi] of points w =
(mak , Mok © o%), wp = (uax , pow © ox) tn Q such that

() limr(f°|w) = sup [r(f°|w)] (0, =),
k-0 wel

(i) d(wx) = — d(w,'a), h(we) = h(w;’,),'and My + NaMax = Mausr + Moz for
everyk = 1,2, ---.

Then f°(v) is an admissible minimax decision function. If there exist
w = (M1, mg:0), ws = (1, pe: o) in Q satisfying (i) and (ii), then f°(v) is the
unique minimaz decision function. '

Proor. By (22) and (ii),

(23) r(f°| @) = r(f°| wr) for every k.
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Without loss of generality, we may assume the two sequences to be so chosen
that h(ws) = h(wr) > O for every k. Then, by interchanging corresponding
members if necessary, we may assume that

(24) d(ws) = — d(wr) < 0 for every k.

Consider the two points wy , wy in @ with arbitrary but fixed k. Writing w , wr
for w1, ws respectively, and using conditions (ii), a simple calculation shows
that the set defined by (16) is

(25) Ay = {wid — i, > L},

L being a strictly increasing function of A.
Choose and fix an arbitrary decision function f(») 5 f°(v). Comparing (5) and
(25), it follows from Theorem 2(iii) and (23) that

(26) r(f*| @) = r(f°| wr) < max [r(f| we), 7(f | wp)].
Clearly, f(») cannot be uniformly better than f°(v) in Q. Again, from (26),
(27) r(f ) < sup [r(f] @),

so that, since % is arbitrary,

(28) sug[r(f0 | )] = lim r(f° | ) < sup [r(f] @)

Since f(v) # f°(v) in the preceding argument is arbitrary, we have shown that
(a) no f(v) can be uniformly better than f°(») and (b) sup [r(f°| w)] = inf sup
w f w

[r(f | w)], i.e. that f°(») is admissible and minimax. The last part of the theorem
follows upon setting wy, = wo in (27). This completes the proof of Theorem 3.
The conditions on 2 for f°(») to be the unique minimax decision function may
be written as follows:
There exist wo = (my , ms : ), wo = (u1 , s : o) tn Q such that

@ r(f° | o) (=2(f" | wp)) = sup r(f° ] w)] (0, =),

29 Gi) w = m + <n‘ - m) (my —mg),  pr=1m +<n1 - n2> (my — m3),

1t ny + N2
(i) Alwo) = Alwo).

For the important risk functions (1) and (6), (29)(ii) implies (29)(iii) (i.e. h(w)
depends on | m; — m. | alone). Moreover, when n; = 7, , (29)(ii) becomes u; =
ms , pe = my . Thus for (1) and (6), when n; = n, the conditions (29) reduce simply
to the condition that at least two points in Q at which the risk for °(v) is maximum
be 1mage points of one another in the plane {w: my = my}. In particular, it follows
that if n, = n, and if the given set Q is “symmetric” in the sense that whenever
(my , my : ¢) is in Q then (my, my : o) is also in @, then f°(v) is the unique minimax
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decision function provided that it attains its maximum risk in , the risk function
in question beging (1) or (6). There are obvious modifications (involving two
sequences of points in ) of these remarks which assert that f°(») is at least an
admissible minimax decision function in case f°(v) does not attain its maximum
risk in Q.

We shall now state the result analogous to Theorem 3 for the case when one
of the means is known exactly, say m; = c. The decision function fo(») is defined
by (3).

THEOREM 4. Suppose that there exist sequences {wy}, {wi} of points wi, = (¢ + a,
c:or), wp = (¢ — g, c: ox) in Q such that

@) klllf r(fe | w) = sup r(fo| @)l (50, »)

(i) h(we) = hlwz) forevery k = 1,2, s,

Thenfe(v) is an admissible minimaz decision function. If there exist wo = (¢ + a,
¢:0), wo = (¢c — a, c: o) in Q satisfying (i) and (ii), then f o(v) is the unique minimax
decision function.

The proof (based on Theorem 2(iii)) is similar to that of Theorem 3 and will
be omitted. Note that for the risk functions (1) and (6), condition (ii) is auto-
matically satisfied.

The reader will have observed that results which may be obtained from
Theorem 2(iii) in the manner of Theorems 3 and 4 will assert the optimal char-
acter of decision functions which are characteristic functions of sets of the type
{v: aZ; + b, > c}. The following example, cited as Example (iii) of Section 1,
shows that for arbitrary @ the optimum decision function need not be of this
type.

Suppose that n; = n, = n, that @ consists of the three points

wy = ’%; - %: 1)7“’1 = (%7%: 1)7“’2 = (—%) —%: 1))

and that the risk function under consideration is given by (1) or (6). Then the
unique minimax decision function is f**(v) given by (4), where A > 0 is deter-
mined by

(30) B[l — f** | w] = E[f** | w.

The proof follows. f**(v) is the characteristic function of the set {v: ¢(v) >
ci91(v) + cop2(v)}, where ¢, ¢1, @2 are the frequency functions of the probability
distributions in E,, corresponding to the parameter points wy , w1 , w; respectively,
with ¢; = ¢, = ¢"/A. Since for all A > 0,

E[f** | @] = Blf** | wl,

and since a unique X > 0 satisfying (30) certainly exists, it follows (cf. (19) and
(C)) that

r(f** [ w) = r(** | 1) = r(f**| w) = B,
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say. Let f(v) be any decision function # f**(v). We shall show that

(31) B < max [r(f | wo), 7(f | @), 7(f | wo)].
Suppose not. Then
r(flw) = Elf| o] < E[f** | ] = r(f** | w1),
r(f [ w2) = E[f | w] < E[f** | w] = r(f**| w).
Then, by Theorem 1, Note 2, we must have E[f | w)] < E[f** | wo), so that
r(flw) =1 — Elf[w] > 1 — E[f**|w] = r(f** | w) = B,

contrary to hypothesis. Hence (31) holds, and since f(») # f**(v) is arbitrary
our assertion is proved. (Note that

T(fole) = r(fol w) = T(.fo|w2)

also, so that f**(v) is uniformly better than f°(») in ©.) We remind the reader

that f**(v) remains the unique minimax decision function with respect to (1)

or (6) and any Q.which contains wy , w1 , ws , and is such that sup [r(f** | w)] = B.
weld

Whether a set Q satisfies the last condition will in general depend on whether the
risk function in question is (1) or (6).

3. Examples and discussion. In this section we shall discuss the relevance of
Theorems 3 and 4 to two specific problems of the greater mean. The examples
given are purely illustrative and the reader will readily construct others in which
the statistician is faced with similar problems of decision.

ExampLE 1. A farmer F has tested two varieties =1, m of grain in a field
experiment in which n; plots were assigned to 7, , 7 = 1, 2, all plots being of equal
area. The plot yields obtained were yu, y12; -+, Yin, and Ya1, Yo, -+, Yan,
bushels respectively. F' gives this data to a statistician S for analysis. F is willing
to assume that the yields per plot for each of the two varieties are normally dis-
tributed with unknown means p;, p2 and a common variance, also unknown.
F says he is particularly interested in whether the two varieties are “significantly
different.”

S is well aware that F’s interest in the varieties is not purely scientific—that
is to say, F did not perform the field experiment for the sole purpose of estimating
the unknown parameters or testing hypotheses concerning them. S also knows
that it is very unlikely that w; s equal, to u, .

Suppose that in fact F wishes to decide which variety he should use next
year on his land in order to make the maximum possible profit, and is afraid
that if he were to act as if the observed mean yields 7, , 7, were the true popula-
tion mean yields, he might make a gross error. So F is willing to compromise
between the two varieties (that is, he will assign some fraction f of his land to
m and the rest to m,) in case S declares that there is no evidence of the two varie-
ties being different.
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If this is the case, S should ask F how much it costs him to use m; and the
price at which he expects to sell his grain. Supposing that these quantities are
a; dollars per acre and b dollars per bushel respectively, and that the area of each
plot in the field experiment was ¢ acres, S will set

m; = expected profit per acre in using variety =;
= (b/c)u: — a; dollars (t=1,2),

@ = (my,m :0), o being the variance of the profit per acre

in using , (t=1,2),
v(w)-= (m1, ms) (see Section 2, (C)),
T = (b/e)yis — @i, & = 07" D @i, 0= (T, Tiny Ta, c, Tang),
i=1

so that r(f | w) is given by (1) and is equal to the expected loss (in terms or profit
per acre) incurred by using the proportions f(v), 1 — f(v) of the varieties m; , m,
as compared with using the variety with the greater mean for the whole of the
land. Then if S is satisfied that the set @ of possible points w satisfies the condi-
tions of Theorem 3 he should recommend that F use m; alone if & > %, , and
my alone if & > Z;, this being the safest procedure in the sense that it is the
minimax strategy (cf. Example 1 in [3]).

We shall illustrate by a simple example the obvious method of verifying
whether f°(v) is the minimax decision function for a given Q. We have by (22),
using the risk function (1) obtained by 'setting y(w) = (m1, mg),

(32) r(f°| ) = h(@)G(— | d) |)
-3
_ ]ml—mzlG(—<$l+ l) |y — ma| /o).

V(2

Now suppose that

’

Q={w:a—‘l;$ml_<_a+

™ N~

(33)
—%Smgﬁb+§:a’o—p$a_§ao}, I>]a—-0b],

where a, b, [, g9, p(>0) are certain constants. By (32), the maximum risk occurs
at some points in @ for which ¢ = ¢, . We have

0 1 1y
(34) o= o) = (L + 1) pa-a,
where
.
'v=x(w)=<%+$;) lml—ﬂ'Lz[/Uo.
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If a = b and n, = n, we see from the remark following (29) that f°(») is the unique
minimax decision function. Suppose therefore that a > b or n; 3 n, or both.
Now

(35) sup [2G(—2)] = xG(—zo) = .1700 (approx.),
where z, = .7518 (approx.). If m; , m; were unrestricted, r(f° | ¢ = ov) would

be a maximum when |m; — m; | = 0'0.’/!?0(7%1 + n%)i’ by (34) and (35). Hence f°(v)
will be the unique minimax decision function if these two lines intersect the square
{a—%gmlg a +%, b — ZQ <me <b +l§} in such a way that at least two
points lying on these lines and in the square satisfy (29)(ii). This will be the case if

y():' ’

ny — N2
n1 + ne

(36) l>max|:|a-b|+y0,max(|a—bl,yo)+

11\
Yo = Zooo <— + -—> .
N1 Neo

We have assumed that I > [a — b |, for otherwise either m; < m, or my > m,
for all w in Q, and there is no problem. It is therefore clear that for n; and n,
sufficiently large, f°(v) will be the unique minimax decision function. That (36)
is not a very strong requirement may be seen by setting a = b, n; = 2n, , in
which case (36) reduces to

where

]
> o9 <l + —1—> (approx.).

N . MNe

We remark that f°(») remains the unique minimax decision function for any
n1, ne “when ! = «” so that @ is given by

(33" Q=f{or—o0 <m < o, —0 <M< 0:00— p < o < ag}.

It is of interest to consider the “one sample” case when one of the means is
known, say m, = c. This will be the case (approximately) if =, is a standard
variety which has been in use for some time and ; is a new variety. The analogue
of the parameter space discussed above is then

37) Q={w:m2=c,a—l§§m1§a+l§:ao—pgasm)}, l§>|a——cl.

By using Theorem 4 it can be seen that fo(v) as defined by (3) is the unique mini-
max decision function if ¢ = a or if ¢ is not necessarily equal to a, but

(38) L _ja=¢|>a <l>i
§ oTo n1 ’

where o is given by (35). Since the left-hand side of (38) is positive, it is clear
that fo(v) will be the unique minimax decision function with respect to (37) if
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ny is sufficiently large. Note that fo(») is the unique minimax decision function
for any n; when [ = o« and Q is given by

37) Q= {wm=c, —o0 <m < ®:5— p < o< 0o}

The reader may find it instructive to consider other plausible sets € which
satisfy the conditions of Theorems 3 and 4 and also some which do not, assuming
o = 1 for simplicity. It should be observed that no matter what @ may be, pro-
vided only that ¢ < gy for all w in @, we shall have by (32) and (35)

3
sup r(f° | w)] < .1700-00'<7% + l) (approx.).

1 Ng

In a similar way it can be seen that for any @ in which m; equals ¢ and ¢ < o
)

%
sup [r(fe | )] < -1700'Uo-<nll> (approx.).

ExAMPLE 2. m; and 7, are two soporific drugs, the random variables generated
by them being the duration of sleep induced by a standard dose in an individual
chosen at random. It is assumed that these two populations are normal with
unknown means m; , m; and a common variance o*, also unknown. In a series
of independent trials in which n; individuals received the first drug and n. the
second, the outcome was v = (Tu, %12, ***, Ting ; Lo, Loz, *** ,L2m,). Lhe
statistician S is required to say which is the more effective drug.

Here a reasonable risk function is (6), where f(v) takes on only the values
0, 1, corresponding to the decisions “m; < my” and “m; > my” respectively.*
The problem of choosing f(v) so as to minimize this risk was considered by Simon
[4]. He showed that in case n; = ny, f°(v) is the uniformly best decision function
in the class of symmetric decision functions. (Given n; = n, = n, a decision
function f(v) is said to be symmetric if f(zi1, T12, ** , Tin ; Tor, Taz, *** , Ton) =
1 — f(@a, Tooy +++, Ton 3 Tu1, X1z, ** * , T1n). See also [3].) It is natural to confine
oneself to the class of symmetric decision functions when the sample sizes are
equal, but under the implicit assumption that if w = (a, b: ¢) isa possible param-
eter point, then ' = (b, a: o) is also (cf. the remarks following (29)). The
illustrations in Section 1 show that if the sample sizes are unequal or if @ is not
symmetric in the sense just described, there may exist decision functions which
are uniformly better than f'(»): in (i) we have a “symmetric” @ but n; ¢ n, ; in
(iii), n1 = np but @ is not “symmetric.”

However, f'(v) is an admissible minimax decision function no matter what
the sample sizes, provided only that Q satisfies a certain not too restrictive con-
dition. We have

G(— | dw) |) for my = mq,

for m;y = m,.

(39) f(flw) =

¢ For some purposes it would be more appropriate to take (1) as the risk function for this
problem, letting the decision functions f(v) take on only the values 0 and 1. We have (essen-
tially) discussed this case in the previous example.
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It is clear that if {w:} is a sequence of points in © such that

lim d@) = 0, then lim 7(/*|wy) = % = sup F(/° | w)l.
—e0 — 00 we

Therefore, by Theorem 3, f°(») is admissible and minimax if some point in the
plane {w:m; = m,} is an interior point of the set € of possible parameter points
(in fact it is sufficient if some plane ¢ = ¢o(>0) intersects @ in a set which
has an interior point on the line m; = m,). Hence if nothing much is known
about the two drugs, S could regard the foregoing as a justification for asserting
“mi > my” if %, > %, and “my; < my” otherwise.

We have given no criterion for the choice of a suitable decision function when
two or more admissible minimax decision functions exist, and our diffidence in
recommending the use of f°(») in the present case is due to the fact that under
the condition stated above there will exist decision functions other than f(»)
which are also admissible and minimax with respect to (6). Let us suppose that
Q is given by (33). Then f°(») is admissible and minimax, by the preceding para-
graph. However, it follows from Theorem 4 that each of

1if£1>01, 0if£2>02,

fow) = { and  f5'() = {

0 otherwise, 1 otherwise,

is also admissible and minimax, where ¢; and c; are arbitrary constants with
l
5

There is, however, some reason for preferring f°(v) to other decision functions
in the present case. S has been asked to give his opinion as to which is the better
drug, and presumably no immediate consequences follow from the opinion which
he might express. (This would not be the case if there were a sleepless individual
on hand who had to be given a dose of one of the two drugs. Cf. footnote 4.)
Although the problem s of a scientific nature, insistence upon literal exactitude
in the interpretation of “incorrect decision” is meaningful only insofar as it is
compatible with the physical situation. In view of the limited determinacy of
unknown parameters in general, and of the limitations of experiments on soporific
drugs in particular, it may be possible and even desirable to modify (6) in such
a way that for any fixed o the risk tends to zero with | m; — m, |. Thus modified,
the risk function would be essentially similar to (1). A rather drastic way of
introducing this modification would be to agree that the assertion of equality
of the two means does not constitute an error in case | my — my | < ¢, where ¢ is
some positive constant. S will then take

max[a,b]—%Scl,t:zsmin[a,b]+

7(f | w) if | my — mzl > €
(40) fo(f|w) = .

0 otherwise,
as the risk function. (Note that in using 7.(f | w) rather than #(f | w), S has in
effect deleted the set {w: | m; — m,y | < €} from the given set Q@ by defining y(w) =
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(0, 0) there, instead of only when m; = m, as in the case of #(f | w). Cf. “zones of
indifference,” [5, pp. 27-30]). It follows from Theorem 3 that f°(») is the unique
minimax decision function with respect to (40) and (33) if a = band n, = n,
and also if at least one of these conditions does not hold but

J

Thus f°(v) will be the unique minimax decision function no matter what =, ,
ng, @, b or I may be, provided only that e is sufficiently small. We shall leave
other modifications of 7(f | w) and discussion of 7(f|w) with respect to other
types of parameter spaces (e.g. (37)) to the reader.

We conclude this discussion with a remark on the proper choice of n; and n,
in using f°(v) when the risk function belongs to the class R defined in Section
2, (C). (The risk functions (1) and (6) belong to R.) Suppose that before experi-
mentation starts, it is agreed that one must have n; + n, = 2k, where k is a
fixed integer. In that case, choosing n, = n, = k will be the best choice of n,,
ny in the following sense. (a) For any fixed w, 7(f° | @), which is the expected loss,
then becomes a minimum. This follows immediately from (22), since

-
(| 0) = h@G(— |dw) |), |d@) | = (—1— + l) |y — ma | /,

n1 Ng

ny — Ne
n + My

l>maxl:|a—b|+e,max(|a—b|,e)+

and | d(w) | has its maximum when n; = n, = k. (b) For any fixed w, the variance
of the loss also becomes a minimum. In using f°(v), the loss takes the values 0
and h(w) only, with P(loss = h(w) |w) = G(— |d(w)|) = « say. Therefore,
the variance of the loss is K’a(l — a). Since a < %, this expression increases with
increasing e, and so has its minimum when n; = n; = k. This remark is, of course,
without prejudice to the question of whether f°(v) is admissible and minimax with
respect to a given @ for every n; and n, with n; + n, = 2k.

4. A remark on randomized decision functions. In the foregoing discussion
we have confined attention to the class of non-randomized decision functions:
the space of possible decisions being some subset of 0 < f < 1, the statistician
constructs (in advance) a suitable decision function f(v), obtains a particular
sample point v by sampling the two populations, and takes f(v) as his decision.
It is, however, of some theoretical interest to consider more general formulations
in which the decision arrived at by the statistician may be a random function
of the sample point .

A randomized decision function can be defined in several ways. One definition
is as follows. Let ¢(z | v) be a function defined for all » in Ey and all real z such
that for any fixed z it is a measurable function of v, and such that for any fixed
v it is the distribution function of a random variable with valuesin 0 < z < 1.
We shall denote thisrandom variable by Z4(v) and call it a (randomized) decision
function. In using it, the statistician first obtains a particular point » by sampling
the two populations, then performs a random experiment whose outcome Z
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has the known distribution function P(Z < z) = &é(z|v), and takes Z as his
decision. The class of all decision functions corresponding to all functions ¢(z | v)
will be denoted by {Z4(v)}. It is clear that this class includes the class of non-
randomized decision functions.

This definition of the structure of randomized decision functions follows the
method described by Halmos and Savage in their interesting remarks ([6], pp.
239-241) on the value of sufficient statistics in statistical methodofogy. For
any Zs(v), we have

P(Z,0) < 2] ) = fE P(Z6) < 2], 1) dKG | o)
(41)

fE 9|0 KO | .

We shall now show that in all problems of the greater mean in which the
methods of Section 2 can be applied to non-randomized decision functions, ran-
domization cannot be recommended. More precisely, the following holds.

TuroreM. Let f(v) be a non-randomized decision function which takes on only
the values 0 and 1 and which is the unique non-randomized decision function whose
expected value E[f | w] satisfies a certain condition Q as a function of w. Then F(v)
1s the unique decision function whose expected value satisfies the condition @Q; i.e. if
Z4(v) is a decision function such that E[Z4 | w] satisfies Q, then

(42) P(f(v) = Z,(v) |w) = 1 for all w.

It follows in particular that Theorem 2 remains valid with the arbitrary non-random-
ized f(v) replaced by an arbitrary Z,(), and in consequence, Theorems 3 and 4
remain valid when the class of decision functions in question is {Z,(v)}.

Proor. Let Z4(v) be a decision function whose expected value satisfies the
condition . Now, by (41) and Theorem 5 of [7] we have

(43) BiZ, 6] = [ 10) dK( o) = Elf| ol
where
(44) £o = [ e, 0<P0) <1

It is clear from (43) that E[f* | ] satisfies Q and so we must have

(45) ) = fo) ae.

by hypothesis. Since f(v) takes on only the values 0 and 1, it follows from (44)
and (45) that

f _ d.gp(z|v) = lae,
{ze=f ()}
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which implies (42). In order to verify the last part of the remark, consider any
particular problem of the greater mean. The risk function of any decision func-
tion Z4(v) is, by (15),

r(Zs | w) = W(w, E[Z, | 0]).

Hence a condition on the risk function of Z; is equivalent to a condition on
E[Z4 | »] as a function of w, and the truth of the remark follows by appropriate
definition of the condition @ in terms of the risk function.
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