NOTES

This section is devoted to brief research and expository articles and other short items.
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ON A THEOREM OF LYAPUN ov

By Davip BLACKWELL

Howard University

The purpose of this note is to point out two extensions of the following theorem
of Lyapunov’, and to note an interesting statistical consequence of each.’

Lyarunov’s TuEoreM: Lef uy, -+, U be non-atomic’ measures on a Borel
field B of subsets of a space X. The set R of vectors [w(E), - -+ , u.(E)], E ¢ B, is
convex, t.e., if 11,72 € R, so does try + (1 — t)rafor 0 < ¢t < 1.

ExrtENsioN 1. Let uy, -+ , u, be non-atomic measures on a Borel field of sub-
sets of a space X and let A be any subset of n-dimensional Euclidean space. Let
f = a@) = [a(z), -, a.(x)] be any B-measurable function defined on X with

values in A, and define v(f) = [ f a(x)duy, -+ -, f a.(z) du,). The set of vectors

v(f) is convex. ‘
Lyapunov’s theorem is the special case in which A consists of two points

(O’ Tt O) and (1) R} 1)°
Proor. Let v(fi) = v:, fi = laa(x), -+, an(®)], ¢ = 1, 2, and consider the
- 2n-dimensional measure

w(E) = fEau(x) duy -+ ,Laln(x) dtn, ‘/;adl(x) dus, - ,'Lm(x) duy, .

Since w(N) = (0, ---, 0) where N is the null set, w(X) = (v, ), for any ¢,
0 < ¢ < 1, there is, by Lyapunov’s theorem, a set E ¢ B with w(E) = (tv1, i),

1“Sur les fonctions-vecteurs complétement additives,” Bull. Acad. Sci. URSS. Sér.
 Math. Vol. 4 (1940), pp. 465-478. For a simplified proof of Lyapunov’s results, see Halmos,
“The range of a vector measure,’”’ Bull. Amer. Math. Soc., Vol. 54 (1948), pp. 416-421.

2 Since this note was submitted, results obtained earlier by Dvoretzky, Wald, and Wolfo-
witz have appeared in the April 1950 Proceedings of the National Academy of Sciences. Their
results are closely related to those presented here, and anticipate the general conclusion
reached here: that in dealing with non-atomie distributions, mixed strategies are unneces-
sary. Their principal tool is also an extension of Lyapunov’s theorem; their extension does
not appear to contain or be contained in either of the extensions given here. The situation
considered here is more general in that an infinite number of possible terminal actions are
possible, but more restricted in that only mixtures of a finite number of pure strategies are
considered here.

8 A measure u is non-atomic if every set of non-zero measure has a subset of different
non-zero measure.
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so that w(CE) = [(1 — )vi, (1 — t)»,). Define f = fi on E, f = f; on CE. Then
v(f) = tnn + (1 — t)v,. This completes the proof.

This extension may be reformulated using statistical language, in the special
case where u;, --+, u, are probability measures, as follows: In a statistical
decision problem in which there are only a finite number of possible distributions,
each of which is non-atomic, mixed strategies on the part of the statistician are un-
necessary: anything which can be achieved with mixed strategies can already be
achieved with pure strategies.

In amplification, u;, - -+, u, are probability distributions, and z is an ob-
servation chosen according to one of them. Having observed z, the statistician
must choose an action d from a set D of possible actions. His loss in choosing
an action d is a(1, d), - - - , a(n, d) when the true distribution of x is w1, - -+ , ua,
respectively. Thus the choice of d may be described as choosing a point a € 4,
the subset of n-dimensional space consisting of the set of loss vectors

[a'(17 d)’ R} a(n: d)]) deD.

Of course several points d may lead to the same a. From our point of view,
two d’s with the same ¢ may be identified, so that it is no loss of generality to
consider A itself as the set of possible actions.

A strategy for the statistician is then a function f = a(x) from X into 4,
specifying the action to be taken (i.e., the loss vector to be chosen) when x is
observed. We shall consider only %B-measurable strategies f. The expected loss

vector from a strategy f is o[f] = f o) duy, -+, f an(z) du, ; the 7-th com-

ponent is the expected loss from f when the true distribution is u; . Thus the
range R of v(f) is the set of expected loss vectors attainable with pure strategies
f. By mixed strategies, i.e., using strategies f1, « - - , fi with probabilities

Dy, D, P 2 1, Zpi = 1,

the statistician can attain all vectors in the convex set determined by R, and
only those. Thus if R is already convex, nothing is gained by the use of mixed
strategies.*

Sequeniial sampling. The above discussion applies directly only to the action
to be taken after a sample point z has been obtained, sequentially or otherwise,
 and asserts that, in the non-atomic case, nothing is gained by mixing actions.

It is still possible that a mixture of sampling plans, for instance tossing a coin
- to decide whether to take another observation, might, even with non-atomic
distributions, achieve an expected loss vector not attainable with any one
sampling plan. It turns out, however, that nothing is gained by mixing sampling
plans, provided all sampling plans provide for at least one observation, and that
the distributions of this observation are non-atomic. Formally, we have the

4 It has been shown by the author in a paper submitted to the Proceedings of the American
Mathematical Society that if A is closed, R is closed. Closure of R implies that a minimax
strategy for the statistician exists.
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THEOREM: Let x = (1, a2, - --) be a sequence of chance variables whose joint
distribution s one of n probability distributions uy, -+, un. Let Sy, ---, Sy be
N sequential decision functions, each requiring the observation of x,, and suppose
the distributions of x, under uy , - -+ , u, are non-atomic. Then any expected loss
vector attarnable from a mixture of Si, - -+, Sy ts also attainable from a single
decision function S.

Proor. Let d;;(x) be the loss from S; when the distribution of z is u;. (The
loss i1s a function of x as well as 7, j, since the cost of observations may vary
with 2.) Then a; = (Ed.;, ---, Ed.;) is the expected loss vector from S;.
Since S,, -+, Sy all involve observing z; , the statistician need not make up
his mind about which decision procedure to use until after x; is observed, i.e., a
possible decision procedure is a division D of sample space into N mutually ex-
clusive x;-sets Dy, -+, Dy, and to use decision procedure S; if x; ¢ D; .
The expected loss vector from D is

@) = (g [ dute dute, -, i [ uta du»(xl)),

where ¢;;(x1) is the conditional expectation of d;; with respect to 2, . If D is the
decision procedure with D; = space X, D; = null set for ¢ % j, then »(D) = a;.
Thus it is sufficient to show that the range of v(D) is convex.

The convexity of the range of v(D) is the special case where u, , - -+, u, are
probability measures of

ExtexsioN 2. Let wy, -+, u, be non-atomic measures on a Borel field B of
subsets of a space X, let ¢:j(x), 7 = 1,---,n,j = 1,---, N, be B-measurable
functions of x such that ¢i; is u;-integrable over X, let ® = (D1, -+, Dy) be a
decompostton of X into N disjoint subsets, and define

N N
v(ﬁ) = (Z ¢lidul y Tt )Z ¢ﬂj dun>.

j=1JD; j=19Dj

The range of v(D) s conver. )
Proor. Let D, = (Du, -+, D), k = 1, 2 be two decompositions. We

must show that for any ¢, 0 < ¢ < 1, there is a D with »(D) =
w(D) + A — Hv(Dy). Write m;;(B) = f ¢i; du; , and consider the 2nN-dimen-
B

sional measure w(B) = m;;(BDyj;), 1 = 1,++-,n, 5 =1,---, N, k = 1, 2.
Since w(B) is non-atomic, Lyapunov’s theorem asserts there is a B with w(B) =
tw(x), i.e., m;,-(BDk,-) = 'tm;'j(ij). Then m,,(C(B)Dk,) = (1 - t)m;,-(D;,,-).
Define D; = BDy; + C(B)Dy;,j=1,:++ ,N, D = (Dy, -+, Dy). Then

9@ = 3 D), -+, me(D)]

¢ Zy:l[mu(Du), ey ma (D)l + A — 1) Ea:l [m1j(Dey), « + , Mai(Dey)]

(D) + 1 — )o(Dy).



