ON THE DISTRIBUTION OF THE CHARACTERISTIC ROOTS
OF NORMAL SECOND-MOMENT MATRICES!

By A. M. Moop
The Rand Corporation

1. Summary. Distributions of characteristic roots have been obtained by
Girshick [1], Fisher [2], Hsu [3], and Roy [4]. The present paper outlines an
alternative derivation of these distributions which is somewhat more elementary
than those that have been published and which may have some pedagogical
utility. The primary object of the paper, however, is to,  obtain the normalizing
constants for these distributions; though the correct values of the constants
have been published in the references cited above, no convincing derivation
seems to have been recorded.

2. The problem. Let
1) i = 2 @ia = 8)(@ja — 7)) G,j=1,2-,k
be sums of squares and products for samples of size m(>k) from a k-variate

normal distribution with covariance matrix || o5; || (= || ¢ || ™) having a k-fold
characteristic root . The a;; are distributed by the Wishart density function

a_iil $(m—1) l aij | 3 (m—k—2) e—}zaiia.-,-

k
26 T] T3 (m — 4)]
=1

@ flagim — 1,69 = L3

with m — 1 degrees of freedom. Let b;; be similarly distributed with n — 1
degrees of freedom and independently of the a;; .
We are concerned with the distribution of the roots wy, - -+, wy of

3) | @i; — wosj | = 0,

which roots form a natural multivariate analogue of chi-square. Similarly the
roots of

4) | ai; — vbij| = 0
provide an analogue for the variance ratio, and the roots of
®) | ai; — w(as; + bij)] = 0

an analogue for the intraclass correlation. More important, the roots of (5)

1 This work was done during the academic year 1939-40 when the author was a graduate
student at Princeton University; it was completed just as the Hsu and Fisher papers ap-
peared, and was therefore never submitted for publication. Recently the author learned
from Hotelling that a derivation of the normalizing constants would be of interest.
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are directly related to Hotelling’s canonical correlations [5] for two sets of
variates. For all these problems it is necessary only to obtain the distribution
for the roots of (5) since the roots of (4) are
(6) vi = us/(1 — u;)
and the distribution of the w; may be obtained by letting n — o in the distrib-
ution of the wu;.

3. Density function for the u; . It is no essential simplification to suppose, as
we shall do, that

0'£j=8§j= 1 fOI' 'i=j,

)

0 for 7s3.
The joint density for a;; and-b;; is
@®) f(aiﬁ’ m— 1, o'ij)f(bff yn— 1, a'ij)’

where f is defined by (2). If ui(us < s < --- < w) are the roots of (5), there
exists [6] a nonsingular linear transformation || ¢’ || such that

) g7 11 1 ass + bsi 1111 g¥ || = [l 8551,
(10) a1 1a® 1111 g7 = ] wis ]|,
(11) a7 10 111 g 1 = 11 = w1,

where the prime denotes the transpose.
We shall transform the &’ + & variates a; and b;; of (8) to the k* + % var-

iates ¢;; and u; where
lass Il = 11 ¢}~

The transformed density is
k $(m—k—2) "k 3 (n—k—2)
(12)  Di(wi, ¢i) = K1F(gs) [111 ui] [III a- u,—)] J,

where J is the Jacobian d(a.; , b:;)/0(u: , ¢:;) and K, is the normalizing constant.
We next show that J factors into a function of ¢;; only and a function of Ug
only. Let the earlier variables be ordered

allyal2"",alk,a227a23)"'>a2kaa33;"';a3k7"';akk»
bll,"',blk,bzz,"‘,bzk,‘“,bkk,
and the new variables will be ordered

2
ul,u2>"',uk7qll7q217"'7qkl»q12’q227""qk2>"'7q1k7"°’qkk'
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On differentiating the relations
(13) aij = ; QirQiethr »
(14) bij = ; Qire(1 — p),

the Jacobian can be written down directly. Supposing this to have been done
(with the a;; and b;; corresponding to columns and the u; and ¢;; to rows), the
result can be simplified by adding the first column of the left half to the first
column of the right half, the second column of the left half to the second column
of the right half, etc. The first row of the resulting determinant then has elements

qh » qudor, qugs1, ** * , qQudn , q§1 yQags1,y * s q0Gk1, 7, QIzel

in the left half, and zeros in the right half. The (k¢ 4+ 1)th row, for example,
has elements

2qu , Gu¥1, ¢t 5 Qa1 , 0,0, -+, 0

in the left half, and the same set with the u;’s omitted in the right half.

Now we show that J vanishes if u; = u, . It will be easy to follow the argu-
ment if one writes down the complete Jacobian for k¥ = 3. Assuming u; = s,
the following steps produce a row of zeros in J:

1) Multiply the columns of the right half by u; and subtract from the
corresponding columns of the left half. This makes the elements
of the left half of rows k 4 1 through 3k all zero.

2) Make all elements of the (k + 1)th row zero except the element
2¢u (in the by column) by subtracting proper multiples of the by
column from the columns having nonzero elements in that row.

3) Make all elements of the (k 4+ 2)th row zero except that in the
bye column.

4) Make all elements of the (k 4+ 3)th row zero except that in the
13 column.

.............................................................
.............................................................

.............................................................

k + 1) Make all elements of the (2k)th row zero except that in the by
column.
k 4+ 2) Make all elements of the (2k + 1)th row zero by subtracting proper
multiples of the k rows above it from that row.
It follows therefore that J has the factor (ue — ).
Similarly J must have all factors of the form u; — u; ; hence J has the factor

(15) IT (s — uy),

1>]
and since J is of total degree k(k — 1)/2 in the u’s the other factor of J must
involve only the ¢’s.
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Thus it follows that (12) factors into a function of the ¢;; only and a function
of the u; only, say

k $(m—k—2) k 3(n—k~2)
a9 Diw) =& [[lw|  [ILa-w] =
4. Normalizing constant. Let us define
1 pup %g
= e a — u)? C— .
then the normalizing constant of (16) is

(18) K, = 1/Lli(m — k — 2), 3(n — k — 2)].

Our procedure will be to first express L(a, 8) as a multiple of L(0, 0) and then
to evaluate the latter factor directly.
In view of (9), (10), and (11),

(19) D = | as; /| as; + bis |,

(20) (L — w) = | bis /] as + by | 5

hence

(1) E( |aa'lflbij|"> _ Ligm —k—2)+r,3n—k —2)+s].
lag + by I L — k — 9), 3(n — k= 2)]

But this quantity is determinable from (8) by a method due to Wilks [7]. Since
the elements of || a;; + bi; || are distributed by

(22) flai; + bsj, m In- 2, a*),
we find first that

.‘ LIy RS —1—=1
@) Eag+ byl = |30t — 1294

as does Wilks in [7]. Thus

cee f | @i + bii |° flasg, m — 1, e*Hf(bi, n — 1, o*)day; Mdby;
(29

1Ty Bm +n—1—1) +
_Iza'l H Thm 7 — 1 — )]

or in another form

[ oo [Lais by I g (1040 by =D giotaeiless sl g oy

(25) 6D Tl — )IT — T+ — 1 =) + ]

= l%a‘i la(m+n—2)+c o I‘[%(m +n — 1 — i)]




270 A. M. MOOD

In this expression we replace m by m + 2r and n by n + 2s and multiply the
whole by
l 3 a? l}(m+n-2)

13
T Tlem — )Irl(n — )]

to get
E(l Qi + bs’j lc I [ ] Ir Ibij l’) = I %a.iil—c—r—s
JIElm = ) + it — ) + Mt n =1 =)+ o+ r+ 4
w TEm +n — 1 —9) + r + sIT[F0m — )IT[E — 9)] :

In this we put ¢ = —(r + s) to get an expression for the right side of (21). In
the resulting relation we put m = n = k 4 2 to get

- Tk +2 = d) + N3+ 2 — 4) + sICE 2k + 3 — 4)]
@ 19 = L0 iy or 75— T r+ AT AG+ 2— NG+ 2= 1)

Now we are left only with the problem of evaluating

(26)

(28) £0,0 = [ ;- [TI (s = w)ILaus,

where R is the region 0 < u; < ue < -+ < w < 1. We first observe that the
integrand may be put in the determinantal form

1 1 1 1
Uy Ug Uz U
2 2 2 2
(29) uy Uy Uz v U
¥
k—1 k-1 k-1 k—1
Uy U Uz cec U

Thus the integrand may be written

k
(30) II (s — w) = 2 (=) [T ui,
> per 1=1
where oy, az, - -+, o is a permutation of 1, 2, - - - k; where the sum is over all
permutations of these integers; and where {(per) is the number of transpositions
in the permutation.
On integrating (30) over R it is found that

_ ‘(_l)t(per)
(31)" L(O’ 0 = § onon+ ag) (o +as + ag) -+ (er +ar+-- - + ) ’




DISTRIBUTION OF CHARACTERISTIC ROOTS 271

It is shown in the Appendix that this sum has the value
32) L(O, i
G 10,0 = 5 1= [
_1 ('= DIk —2)! --- 2111

E'[3-4:5--- (k+ 1)][5:6 --- (k+ 2)][7-8 --- (k+ 3)] -+ [2k —1]

ATk — 1+ 9T@k+1 — 2i)

6o =1II T2k +1—79)
This may also be put in the form

T3k + 2 — )Lk + 2 — Ik + 1 — 9]
II
o T3k + 3 — 1,)]
The identity of (34) and (35) is easily shown by induction on & employing the
relation

(36) I'(h+ DI + 3) = V/#l'(2h + 1)/2%.

The form (35) simplifies the final expression for K, which is found by putting
(27) and (35) in (18) to get

(33)

35 L(,0) =

k g
37 Ky = I'l3(m + n - 1 —4)] .
@7 2= L TG = OB — DTB® + 1 = 9]
Putting (87) in (16) we have the density function for the roots of (5), and
the densities for the roots of (3) and (4) can then be obtained as stated at the
end of Section 2.

APPENDIX

We wish to demonstrate that if g;(z = 1, 2, --- , k) are k distinct positive
quantities indexed in order of magnitude, then

E ( l)t(per) Hg" - gj)/fI
&, = —_—
(2) por i1+ ). ity o+ oyw) (m‘yi + g ol
where 1, ¥s, - -+ , Yr is & permutation of g1, g, - - - , gk , the sum is taken over
all permutations of the g;, and #(per) is the number of transpositions in the
permutation y;, -+, ¥ . This identity was first formulated and proved for
g: = 1 with considerable aid from J. B. Rosser. Here we give a different and
easier argument which handles the more general situation,

First we obtain another identity as a lemma, namely,

k
® Yulllton s,
=l ki i — 07 i=l

The following argument for (b) was formulated by John Nash. The left side of
(b) is a rational function of g, say P(g1)/Q(g1), which we may suppose to be
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reduced to its lowest terms. We first argue that the rational function is really a
polynomial becuase it does not become infinite for any finite value of g; . Cer-
tainly the only possible roots of Q(g;) are g2, -+, gr . Suppose g1 = g2 + ¢
then the first two terms (the others do not have g; — g; in their denominators)
on the left of (b) may be written

e [rofiatets_,fate]

which is clearly bounded as ¢ — 0. Similarly no other g; is a root of @(g1); hence
the left side of (b) is a polynomial P(g;) in g; . Now let g; become large; the
first term on the left of (b) becomes essentially g, while the others become con-
stants; hence

P(g) = g1 + Cy(gzy *+ 5 gu)-
Similarly as a function of g. the left of (b) is of the form

g2+ Ca(g1, 93, **+ , Ga),

and so forth. Furthermore, the left of (b) is homogeneous of degree one in the
g’s; it must therefore be D% g; .

Having (b) we can prove (a) by induction. It is true for k¥ = 2, and we shall
show it to be true for k 4+ 1 given it to be true for k. Applying (a) to the left
side of the following relation, we have

E (_ l) t(per)
o+ )it ytys) - iyt o+ Yrn)

1 k . — (_l)t(per)
— ’ — Ys — Yj
Ze k .[gyc+yj:|y1+yz+---y»+l’

per
Y1<ys< oo <Uk III Y

where the sum on the right is over all permutations which have y1 < y» <
ys < -++ < yi. This means that the sum has only k + 1 terms; these terms
arise from putting ¥:.1 equal to g1, g2, -+ -, gk41 in turn and arranging the
other ¢’s in ascending order. Thus the right side of this last relation may be

written

pof [Hg‘—g’][ﬁ yt+g ](——;{)fi—’

0= ] g, L5795 T 0 =i 1y — gl 3
1 1

-[(Te32) /He][5e(DeED) &,

and the final bracket is unity in view of (b).




DISTRIBUTION OF CHARACTERISTIC ROOTS 273

REFERENCES

[1] M. A. GimsHIcK, “On the sampling theory of the roots of determinantal equations,’
Annals of Math. Stat., Vol. 10 (1939), pp. 203-224.

[2] R. A. F1suER, ‘“The sampling distribution of some statistics obtained from non-linear
equations,” Annals of Eugenics, Vol. 9 (1939), pp. 238-249.

[3] P. L. Hsvu, “On the distribution of roots of certain determinantal equations,” Annals
of Eugenics, Vol. 9 (1939), pp. 250-258.

[4] 8. N. Roy, “p-statistics, or some generalizations on the analysis of variance appropriate
to multivariate problems,” Sankhyd, Vol. 3 (1939), pp. 341-396.

[5] H. HoreLLING, “Relations between two sets of variates,” Biometrika, Vol. 28 (1936),
pp. 321-377.

[6] M. BOCHER, Introduction to Higher Algebra, Macmillan, 1929, p. 171,

[7] S. S. WiLks, “Certain generalizations in the analysis of variance,’”’ Biometrika, Vol. 24
(1932), pp. 471-494.

N



