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1. Summary. Unbiased critical regions of type D for testing simple hypotheses
specifying the values of several parameters are defined and their properties
studied. These regions constitute a natural generalization of the Neyman-
Pearson regions of type A for testing simple hypotheses specifying the value of
one parameter. A theorem is obtained which plays the role of the Neyman-
Pearson fundamental lemma in the type A case. Illustrative examples of type
D regions are given.

2. Introduction. The parameter space @ will, in this paper, be a subset of a
k-dimensional Euclidean space (¢ > 1), and § = (6;, -+, 6;) will denote a
point in . A simple statistical hypothesis is one which specifies the values of
all unknown parameters. When we refer to a statistical test we mean a Borel
measurable set in an n-dimensional sample space such that if the sample point
falls in this critical region we reject the null hypothesis. In this paper the term
region will always mean a Borel measurable set. The probability of rejecting a
true hypothesis when using a given test is called the size of this test. A test is
unbiased if the power function of the test has a relative minimum for the value
6 = 6% where ¢° is the value of 6 specified by the hypothesis to be tested.

A locally best unbiased region for testing a simple hypothesis specifying the
value of one parameter is called {ype A by Neyman and Pearson [1]. It is ob-
tained by maximizing the curvature of the power curve at the point 6 = 6
specified by the hypothesis, subject to the conditions of given size and un-
biasedness. Geometrically speaking, the power curve of a region of type A is
above the power curves of all other unbiased regions of the same size in an
infinitesimal neighborhood of . For the purpose of generalization to the k-
parameter case it is useful to note that if we consider the power curve of the
type A region and the power curves of any other unbiased regions of the same
size, then the length of a horizontal chord at a fixed infinitesimal distance above
the minimum point is & minimum when compared with the length of this chord
on the power curves of the other unbiased regions of the same size. We note
that the definition of type A regions does not use any information about the
relative importance of errors of type II. (An error of type II is made when we
accept a false hypothesis.)

Type A regions remain invariant under transformations of the parameter
which are locally one-to-one and twice differentiable. Regions of type A can
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be proved to exist under quite weak assumptions on the joint density function
of’ the sample.

When we proceed to consider simple hypotheses specifying the values of
two or more parameters, we are immediately faced with a more complicated
situation. (For the sake of simplicity in statement, we confine ourselves in this
introductory section to the two-parameter theory; the extension of our dis-
cussion to three or more parameters is direct.) In the two-parameter case the
geometrical picture of the power function is a surface, and if we requite of a
locally best unbiased region that its power surface have maximum curvature
along every cross-section at the point (6;, 6:) = (62, 63) specified by the hy-
pothesis, subject to the conditions of size and unbiasedness, then it develops
that this requirement cannot be met even in the simplest cases; for if we maxi-
mize the curvature of the power surface along one of its cross-sections, we find
that in general this causes the curvature to diminish along other cross-sections
and so we cannot maximize the curvature along all cross-sections at once.

To handle the two-parameter theory, Neyman and Pearson [2] considered
type C regions. They require of a critical region not only that it be of given
size and unbiased but also that it have constant power in an infinitesimal neigh-
borhood of (6}, 63) along a given family of concentric ellipses with the same
shape and orientation; the type C region is then defined as the one among this
class of regions which gives best local power. When the given family of ellipses
consists of circles, the region of type C is called regular; otherwise it is called
nonregular. One can choose the family of ellipses if and essentially only if one
knows the relative importance of errors of type I in an infinitesimal neighbor-
hood of (63, 63). In the absence of such information one cannot proceed to find
a region of type C. Regions of type C retain their property of unbiasedness under
transformations of the parameter space which are locally one-to-one and twice
differentiable, but in general regular unbiased critical regions of type C become
nonregular under such transformations. Hence if one is inclined in the absence
of advance information about errors of type II to favor the regular unbiased
region of type C as a region fulfilling “good” intuitive requirements, then the
objection can be raised that these regular regions of type C are not invariant
under. transformations of the parameter space.

There is an approach to the problem of finding a “good” critical region which
overcomes the objections raised to the type C theory; i.e., it will provide us
with.a criterion for choosing a critical region without using any advance knowl-
edge as to the relative importance of errors of type II, and this type of critical
region will be invariant under transformations of the parameters. This type of
critical region, which will be a natural generalization of the type A region of the
one-parameter theory, will maximize the Gaussian curvature of the power
surface at (6y, 6:) = (6}, 63), subject to the conditions of size and unbiasedness.
In the next two sections we shall develop this theory for simple hypotheses
spécifying the values of two parameters, and then in Section 5 we shall extend
it to the case of simple hypotheses specifying the values of three or
more parameters.
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3. Definition of ynbiased critical regions of type D in the two-parameter case.
We introduce for the power function of a region w the symbol

(31) B(ol y 02 I w) = PT(E & wl 01, 02))

where E = (xy, - -+, %) is the sample point in an n-dimensional sample space.
Here the joint probability distribution of the sample depends on the param-
eter 6 = (61, 6:), and we are testing the hypothesis (6;, 6;) = (67, 63). We
make a translation of the parameter space to bring the point (67, 63) to the
origin, so that we may consider the test of the hypothesis (6:, 6z) = (0, 0). The
size of the critical region is then

(3.2 8(0,0|w) = Pr(E cw|0,0). )
We also introduce the following notation:

aﬁ (01 ) 02 l w)
a0;
8°8(01, 0, | w) l
80; 96; |

33) Bi(w) = =12,

01.09)=(0,0)

01.09=0.0)
We assume these derivatives exist. We shall write 8; and g;; for 8;(w) and 8;;(w)>
respectively, whenever our doing so will cause no ambiguity. We note that the
derivatives are taken at (6, 6;) = (0, 0), though this fact does not show up in
our notation.

In books on differential geometry, such as Eisenhart [3], it is shown that if
we consider a surface in three-dimensional Euclidean space and a point (xo , yo)
at which the second partial derivatives of the function z = f(x, y) which de-
scribes the surface exist and are continuous, then the so-called Gaussian or
total curvature K of the surface z = f(x, y) at the point (xo, yo) is given by:

o’z ?
K = ox? (z0.0) Y |(zo.v0) B [axay (zo.vo)]
G+ EL ]+ (5L
14 |2 d
9% |(z0.u0) Y |zo.vo)

The Gaussian curvature is invariant under translation and rotation of the co-
ordinate axes. Applying (3.5) to the power surface 8 = (6, 6; | w) at the point
(61, 6) = (0, 0), imposing the condition of unbiasedness on w, and noting that
necessary conditions for an unbiased region are that 8i(w) = Bx(w) = 0, we
have

o'z 6_2

(3.5

(3.6) K = Bu(w)Ba(w) — Bl(w) _

d+o0T0)ye Bul) balw) | _ 41,

Brz(w) B2 (w) N

where

B = () ).
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As a natural generalization of the type A region of the ong-parameter theory,
we now propose as a critical region for testing (6;, 6;) = (0, 0) that critical
region which maximizes the Gaussian curvature of the power surface at (0, 0),
subject to the conditions of size and unbiasedness. This leads us to the following

DEFINITION. A region w, ts said to be an unbiased critical region of type D for
testing H, if :

L B(O: 0 I 'U)o) = a;

IL. Bi(we) = O, 1=12;

III. B., is positive definite;

IV. det B,, > det B, for any other region w satisfying I-111.

Condition I specifies the size of the test. Conditions II and III insure the
existence of a relative minimum at (6, 6:) = (0, 0) and so imply the condition
of unbiasedness. Condition IV specifies that the region of type D has maximal
Gaussian curvature among all unbiased regions of the prescribed size.

Let us consider the geometrical interpretation of a region of type D. In the
one-parameter theory we noted that the type A region minimizes the length of
a certain. infinitesimal chord on the power curve. We shall now see that the
type D region minimizes the area of a certain infinitesimal ellipse, subject to
the conditions of size and unbiasedness, Consider a Taylor expansion of the
power function in an infinitesimal neighborhood of (6;, 6;) = (0, 0). We have,
neglecting infinitesimals of the third and higher orders,

B(8:, 62| w) = B(0, 0| w) + 0181 + 682 + 3(078u + 2016812 + 63622)
3.7
= a + 3(01Bu + 261081 + 63Bx).
Consider the ellipse 618 + 2610812 + 638 = 8, where 3 is a positive constant;
this ellipse is a horizontal cross-section of the power surface at an infinitesimal
distance above the minimum point (6;, 6;) = (0, 0). It is well known that the
area of this ellipse is given by
ﬁnﬁul = \/det B.

1/ B12 B2

We have just seen that the region of type D maximizes the determinant of B
subject to the conditions of size and unbiasedness. Hence it minimizes the area
of our infinitesimal ellipse subject to these same conditions.

0 o

(3.8)

4. Theorems concerning regions of type D in the two-parameter theory.
Having defined regions of type D, we now wish to obtain a theorem which will
characterize the structure of such regions for us. We shall assume the following
fundamental condition is satisfied:

There exists a joint density function p(E | 61, 02) for any point (6,, 62) in the
paramelter space Q; and for any fixed region w in the sample space the integral

Jf p(E | 61, 65) dE has second partial derivatives with respect to 6, and 0, in a
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neighborhood of (61, 62) = (0, 0) which are continuous at (0, 0), and the integral
can be differentiated twice under the integral sign with respect to 6, and 6, at (0, 0).

The derivatives of the above types taken at (61, 82) = (0, 0) will be denoted
simply as follows:

(41) 6%[ p(E | 61, 05) AE |g;mpy=0 = f p: dE = B;(w), i=12,
3 w w
(402) 60160 f p(E I 01, 02) dE l01—03-0 = [ Dii dE = ﬂu(w) i,j = 1’ 2’
where
_ 9p(B| 61, 6) _ " p(E|6:,6)
i ul WU vl R

We also write p(E |0, 0) =
We seek a theorem which will tell us how to characterize the structure of a

2
region wp such that f gudE f g dE — ( f g1z dE> is a maximum, subject

to the side conditions that f fidE = ¢;, 1 = 1,---, m, where the g;; and

the f; are given integrable functions and the c; are given constants. If we have
such a theorem, then by taking m = 3, gu = pu, g12 = P12, g2 = P2, 1 = P;
fo=m1,fs=p2,6 = a,¢ = 0,c; = 0, we will be able to use the theorem to
characterize the structure of a region of type D, since in terms of the p’s our
conditions on a type D region are:

I’.f pdE =
wo

. [ pdE =0, i=1,2

wo
III'. The matriz Py, = < f Dij dE’), %, J = 1, 2, is positive definite;
wo

IV’. det Py, > det P, for any other region w satisfying I'-III'.

We will now state the Neyman-Pearson fundamental lemma, which is used
in the one-parameter theory to find regions of type A, in order to indicate the
type of theorem we are seeking and also because we shall use this lemma in
proving our theorem.

- THE NEYMAN-PEARSON FunpDAMENTAL LEMMA. Suppose m + 1 given in-
tegrable functions fo, fi, *++ , fm are defined in an n-dimensional space. Consider
the set of all regions w for which the following conditions are fulfilled:

(4.4) [ fudE = e, P=1, . m,
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where the c; are m given constants. If wo vs a region which satisfies the m conditions
(4.4) and of

fo= 20 kifi in w,
(4.5) =1

fo < 2 kifi outside wo,
taml
for m suitably chosen constants k; , then wo has the property that

(4.6) f #aE > [ fdE

for any region w which satisfies (4.4).
We proceed to state and prove a lemma which will tell us how to characterize

a region w, maximizing f gudE f g2z E subject to integral side conditions,
and then to use the lemma and a corollary to it to prove a theorem which will

characterize the structure of a region w, which maximizes / gudE f g2 AE —
w w

( f i dE)? subject to integral side conditions.

Lemma 1. Suppose m + 2 given integrable functions gu , ge2, fr, **+ , fm are
defined in an n-dimensional space. Consider the set of all regions w for which the
following conditions are fulfilled:

(407) ffidE=C;’ i=1’o..,m’

“.8) f g; dE > 0, ji=12

where the c; are m given constants. If wy is a region which satisfies conditions (4.7)
and (4.8), and if

2 m

> kg = 2 kifi in wo,

teml te=]
(4.9) . n
X kisgi = O kifi  outside  wo,
te=] fe=]

where Iy = f g2 AE, ks = f gu AE, and the k; are m suttably chosen constants,
wo wo

then wo has the property that
2 2
(4.10) II f g5 dE = ]I f gii dE
Jml JYw

J=1 Jwy

for any region w which satisfies (4.7) and (4.8).
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We note that we must know our region w, in advance so that we can cal-
culate ky and kg, and thus verify whether w, has the structure required by the
lemma or not.

Proor. We apply the Neyman-Peatson fundamental lemma to the function

2
fo= Zl kigis = 911/ g2 AE -+ gzz'f gu dE.
= wo wo
From (4.6) we obtain

@u)LdemeE+L@mELdegngmEmeE

for any region w satisfying (4.7). Knowing (4.11) we must, prove that

412) [dB [gmaE < [ guiB [ guam
w w wo wo
for any region w satisfying (4.7) and (4.8).
Let
f gi; AE
(4.13) = ji=12.
f gii AdE
wo

Since the integrals f gi; dAE, f g;idE, j = 1, 2, are all positive by (4.8) we
w wo

may rewrite (4.11) and (4.12) in terms of the x;’s as follows:
(4.14) X + 2o S 2,
(4:.15) 2122 S 1.

Thus we must prove that xze < 1 whenever (21 + x2) < 1, where z; and

are positive real numbers. But this follows immediately from the well known
inequality between the arithmetic and geometric mean, and hence our lemma is

proved.
CorOLLARY. If a region wo satisfies. conditions (4.7), (4.8), and (4.9) of the

lemma, and if g2 18 a given integrable function for which f g2 dE = 0, then
wo

2
dE dE — ( dE>
/;ﬂo Jn Lo G22 j;o J12
2
Z f gudEfgzng— <f gudE)

for any region w satisfying conditions (4.7) and (4.8) of the lemma.

(4.16)
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We now use the lemma and the corollary to it to prove the following theorem:
TrrorEM 1. Suppose the elements g;; of a symmetric 2 X 2 matriz

Q= (gn 912)
g21 g22
are given integrable functions defined tn an n-dimensional space; and that f, - - ,
fm are m other given integrable functions defined in this space. For any region w, let

[j; gu dEj;gudE]

L/w g1 dE ./'; o2 dE

Constider the set of all regions w for which the following conditions are fulfilled:

w = .

“17) ffidE=c;, i=1-,m,

(4.18) Gy 18 positive definite,

where the c; are m given constants. If wy 18 a region which satisfies the conditions
(4.17) and (4.18), and if

2

2 kijgy > El kife in wo,

By Joml

(4.19) . .
> kijgi < ‘Z k:f: outside wp,
3y Juul -]
where ku = f g2 AE, kn = f gudE, ky = kn = — f g dE, and the k; are
wo wo wo

m suitably chosen constants, then wy has the property that
(4.20) det G,y > det Gy

Jor any region w which satisfies (4.17) and (4.18).
Proor. We know there exists an orthogonal matrix H of constants which
diagonalizes Gy, ; that is, H'GyH is a diagonal matrix, and H’'H = I. Apply

this transformation to
G = (gu gn)
go1  G22

and let

G* = <g:; gl?) = H'GH.

9:1 G22
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We note that
[ dhaz o

wo

(4.21) Ga, = = H'G,,H.

)

0 f g2 dE
o

Since H is orthogonal, we know that det Gy, = det Gu,, and also det G, =
det G , where

[ otam [ gt am

Gy =
wa g2 dEfwy%"z dE

Thus we see that if det Gu, > det G+ for any region w satisfying (4.17) and
(4.18), then det G, > det G, for any such region, and this is what we seek to
prove. But since Gy, and G, are positive definite, we know that G, and G are
positive definite; hence their diagonal elements are positive and they satisfy
condition (4.8); then by our lemma and its corollary we know that det Gi, >
det G% for any region w satisfying (4.17) and (4.18) (and hence (4.8)), if wo

satisfies

= H'G,H.

oh [ ohdE+gh [ ohdB2 X hsi in w,
(4.22) o e -
g1 f g2 AE + g3 f gh dE < Z; kifi outside wy.
[] wo [

It now remains only to prove that the conditions (4.22) are implied by (4.19).
To do this we shall prove that

* * * *
dE dE = dE dE — 2 dE.
gn _/;ogzz + g22 Logn gu Logzz + 9= Loyu 12 _Logn

Denote the adjoint of a matrix A by adj A. Then (adj Go,)G* =
H'(adj Guo)HH'GH = H'(adj G.,)GH, since H is orthogonal. But

gufwo gndE+gzzL° gu dE — 2gmfw° g dE
is the trace of (adj G,,)G and similarly
gi'ifwo g% dE + gk, fwo g dE
is the trace of (adj Gi,)G*. Hence our two expressions are equal, as we know
that the trace of a matrix is invariant under an orthogonal transformation, and

we have just seen that (adj G&,)G* is obtained from (adj G.,)G by such a trans-
formation. This completes the proof.
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We shall now prove a result we mentioned earlier; namely, the invariance of
regions of type D under transformations of the parameters.

TrEOREM 2. If the transformation 0; = Ty(0,, ©,), 1 = 1, 2, is such that the
first and second partial derivatives 30,/00; and 8°6,/00,00; exist and are contin-
uous at (0., @) = (0, 0), 1, 7, s = 1, 2, the Jacobian 9(6; , 62)/3(0,, ©,) differs
from zero at (0., B,) = (0, 0), and (0, 0) maps into (0, 0); then a region w,
which is an unbiased critical region of type D for testing (61, 6;) = (0, 0) against
the set of alternative hypotheses specifying the values of the parameters 6, and 6, ,
will remain an unbiased critical region of type D for testing (0., ©;) = (0, 0)
against the set of transformed hypotheses specifying the values of the new param-
eters O, and O,.

Proor. We adopt the following notation:

g -
(423) aa?l 01=03=0 ! 66(32 01=62=0
2 2
72 =M 2 = N.
GICH 01=09=0 ! 90 01=82=0
By hypothesis the determinant of
K L
7= (¢ %)

is not equal to zero. We denote by B, and B(j; the partial derivatives of the
power function with respect to ®; and @; evaluated at (0., ®;) = (0, 0).

Also let
B = (ﬂ(u)(’w) B(m)(w)>
@ Ban@w) Benw)/”

Then we can write
Bw = BK + B M,
Be = BiL-+ B:N.

The condition that 8(0, 0 |ws) = « is unchanged by the transformation of
parameters. Since we know that for an unbiased region 8, = 0 and 8; = 0, we
obtain from (4.24) that 8qy = 0 and B = 0. Thus, since the partial derivatives
of the transformation are continuous, our property of unbiasedness is retained.
Also since 81 = 0 and B, = 0, it is easily seen that

(4.25) Bwy = J'ByJ.

Since J is nonsingular by hypothesis, we know that By, is positive definite
since B,, is a positive definite matrix. Also we have that

(4.26) det By = (det J)* det B, ;
and since det J # 0, it follows that if det B,, > det B, , then det B,y >

(4.24)
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det Bw,. Thus we have seen that w, satisfies all the conditions of a region of
type D for testing (0, , ®;) = (0, 0), and our proof is completed.

The inequalities which must hold within and outside the unbiased critical
regions of type D can frequently be simplified if we express them in terms of
the derivatives of log p(E | 6, 6;). We write

- d log p(E l 01, 92)

(4.27) o 2 30, (01,0)=0.0)’
¢ = ) IOg p(E l 01 ) 02)
“ 96,90, 01.82)=0.0)
where ¢, s = 1, 2. In particular, the simplification will be considerable if
(4.28) ¢ = At + Bupr + Cutp, . t,s=1,2,

where A, , Bis, Ci are independent of the sample point E but may depend on
(61, 6,). If (4.28) is true, it will be seen that

(4.29) " = 1D, D2 = $2D,
(4.30) Die = (s + Aus + Butr + Cut2)p.

Consequently, the type of inequalities (4.19) occurring among the sufficient
conditions of Theorem 1 for a region of type D will reduce to the following for
points where p > 0 (assuming that W (6, 6:) = {E|p(E |6, 62) > 0} is
independent of (6, 62)):

431) (f pu dE ) 62 + (f pa dE) ¢§—2<f P dE) din
wo wo wo

Zk+ ks + ko ,

where the k; are new constants easily expressible in terms of the k;, f pi; dE,
wo
and the coefficients in (4.28). The ki must be \determined so as to
satisfy f pdE = a [ pdE =0, [ #dB = 0, which, owing to (429),
wo wo wo

reduce to f pdE = a, f op dE = 0, f ¢ dE = 0, respectively. Using
wo wo wo
these relationships, the inequality (4.31) will further simplify to
(f ¢1p dE + Aua) ¢2 + (f ¢3p dE + A22a) 1
wo wo

(4.32)
-2 <f ¢p12p dE + Ama) $1ds 2 ki + kay + koo
wo

Here the sign > applies in wo and. < outside wo . The region described by this
inequality is obviously the region outside an ellipse in the ¢, ¢o-plane.
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b. Generalization of the theory to the k-parameter case. We shall now in-
dicate how to generalize the theory of Sections 3 and 4 to the case where we
have k parameters, where k£ > 2. Our main task here will be to obtain a generali-
zation of Lemma 1 and Theorem 1 of*Section 4.

The power function is now designated by 8(6:, 6, -+, 6 | w), and we are
testing the hypothesis that (61, 6z, ---, 6:) = (0, 0, ---, 0). For brevity we
write § = (61, 6;, - -+ , 6), so that 8(6 | w) now will symbolize the power func-
tion and the hypothesis is § = 0 = (0, 0, +++, 0). B:(w) and B;;(w) will again
denote the partial derivatives of 8(6 | w) evaluated at § = 0, where now ¢ and
j run from 1 to k.

We now define the generalized Gaussian curvature of 8(6|w) at 6 = 0 as
follows:

ﬂn.(w) ce Blkgw)

Bia(w) - -+ Buu(w) det B,
G.1) K= 2 R - k o

(1 + S_; ﬁ'ﬁ-(w)) (1 + ng Bi-(w))

where
Bu(w) « -+ Bu(w)
B, = S N
Br(w) -« + Br(w)

The generalized Gaussian curvature is invariant under translation and rotation

of the coordinate axes in the (k¢ 4 1)-dimensional space of (8, 61, 62, « -, 6%).
Imposmg our condition of unbiasedness on 8(6 | w) at 6 = 0 gives us 8;(w) = 0,
j= , k; and hence we have for 8(6 | w) at § = 0

(5.2) = det B, .

In view of this discussion, our definition of a region of type D in Section 3
immediately generalizes to k& parameters.

Geometrically, the region of type D may be regarded as minimizing the
volume of a certain infinitesimal k-dimensional ellipsoid D51 B::0; = &,
as explained in detail in Section 3 for the case k =

We again assume the fundamental condition at the beginning of Section 4 is

satisfied. We use the notation of (4.1), (4.2), and (4.3); i.e., Bi(w) = f p: dE,

and Bii(w) = f pijAE, where now ¢, j = 1, --- , k, and we let p(E |0) =

In terms of these p’s our conditions on a type D region are expressed by I'-IV’
of Section 4, with ¢ and j running from 1 to k.

We thus see that in the k-parameter theory we need a theorem which tells
how to characterize the structure of a region which maximizes the determinant
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of a symmetric positive definite k¥ X k matrix, whose elements are integrals over
the region, subject to integral side conditions. To this end, we obtain generaliza-
tions of Lemma 1 and Theorem 1 of Section 4.

We generalize the statement of Leinma 1 by replacing 2 by k whenever a 2
occurs in the statement. Relation (4.9) is replaced by

k m
2 kigi > 2 kfi in w,

=1 =1

(53) k :
Z k'izgii S Z kifi outside Wo

=1 7=1

where
k
bi=11 [ gsam.
j=1 Jwg
ki

The proof of the lemma then proceeds exactly as it does in the case k = 2.
The corollary to Lemma 1 is now given in the following form:
CororLLARY. Consider a symmetric matriz

Ju - Ju

gr1 **° Gkk
whose elements are given integrable functions defined in an n-dimensional space.
For any region w tn this space, let

(fwgudE--- fwgu,dE’
. . .

fgudE "’/gkkdE

Now if wo s a region that satisfies the conditions (4.7), (4.8), and (5.3) of the
lemma, and if furthermore f g:;dE = 0 when ¢ £ j, then det Gy, > det G, ,

wo
where w 18 any region in the space for which Gy, s positive definite and the condi-
tions (4.7) are satisfied.
Proor.
k

(5.4) det Gy, = I1 f

=1 Jw

k
gii AE > H/ gii AE > det G,
[ j=1Jw

where the first inequality follows from the lemma and the second is a well

known inequality for positive definite matrices (see Cramér [4], p. 116).
Ptoceeding to Theorem 1, we generalize the statement by once again re-

placing 2 by k whenever a 2 occurs in the statement. Relation (4.19) is
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replaced by
Z Bugs > 3 kefe in o,

4, j=1 1=l

Z kigis < Z k:f; outside wy,

i, j=1

(5.5)

where k;; is the (7, j) element in the adjoint matrix of G,,. We note that
D iimt kijgi; = trace [(adj Gu,)@], where adj G, denotes the adjoint matrix
of Gy, . The proof of the theorem then proceeds exactly as it does in the case
E=2.

Regions of type D in the k-parameter theory remain invariant under trans-
formations of the parameter space which are locally one-to-one and twice dif-
ferentiable with continuous partial derivatives. This result is obtained by a
direct and immediate generalization of Theorem 2 in Section 4.

As in the two-parameter theory, the inequalities which must hold within and
outside the unbiased critical region of type D can frequently be simplified if we
express them in terms of the derivatives of log p(E | 8). We write:

3 log p(£ | 6)
e = a6, 9t
(5.6) ,
by =2 log p(E | 6)
“ 00,00, oo’

where ¢, s = 1, 2, -, k. In particular the simplification will be considerable if
k

(6.7 b1 = Ass + Jz; Buidi, t,s=1,2,+--,k

where A;, and the B;,; are independent of the sample point E but may depend

on 0. An unbiased critical region of type D found by application of Theorem 1

will then be the outside of an ellipsoid in the space of the ¢¢, ¢ = 1, .-+ , k.

6. Examples. Suppose that the joint density functions specified by the ad-
missible hypotheses are all of the form

p(E | M1, H2)
(6.1) 1 N
- (2m)¥nrtnD g nigne eXp[ { o 2 (@ — )+ 2 Z+ (z; = pa) }]
=1 2 i=nj
with known oy and o2, for —o < 2, < o, 7 = 1, 27 e (n1 + ’nz). Thus it

is assumed that the observations represent two samples of n; and n, individuals
respectively, randomly and independently drawn from two normal populations
with known standard deviations o1 and o, respectively and with unknown means
equal respectively to w; and ;. The simple hypothesis Hy to be tested is that
(w1, m2) = (0, 0). We shall find the unbiased critical region of type D for test-
ing H, .
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The joint density function (6.1), as is well known, satisfies all the conditions

required in the present theory. Making some simple calculations and substi-
tuting into (4.32)3 we obtain

o= ([, () 05 2]
A /LG

—2 <f mran dE) ("‘Z”"”’) —K-BE - KM 20
wo 1

0'10'2 102

as ‘the inequality defining the critical region wo, we seek, providing it can be
found by our methods, where %, and Z, denote the means of the two samples.
It is seen that w, is bounded by a surface corresponding to the equation

f(@, %) = constant, and that, tfnerefore, the conditions f pdE = a,
wo

f opdE = 0, f ¢:p dE = 0, which the critical region has to satisfy, and
wo wo

also the integrals involved in (4.32) can be expressed by means of integrals
taken over a region wo in the plane of # and %, determined by the same in-
equality (6.2). Of course, instead of the original joint density function p(E | 0, 0),
we shall have that of # and %, . We further simplify our notation by introduc-
ing, instead of % and %, the variables

(6.3) u=VnE/o, v=ni/os.

Our problem will now be to guess a region wo in the u, v-plane and then see if
we can determine the constants k; so that the plane region determined by the
inequality

::::2 [(ff w'p(u, v) du dv — 0‘) v+ (ff .0 0D, v)du dy — a)
- 2(ff . uvp(u,v)dudv>uv:| SR YT U
o g1 o2

will be the region wo , where wq satisfies the following conditions:

(6.5) fj,‘,;' p(u, v) du dv = a;

(6.4)

(6.6) f];,, up(u, v) du dv = 0, f[,, vp(u, v) du dv = 0;

ff,,up(u,v) dudy — a ff" wp(u, v) du dv
6.7) wo
ffw(.' wwp(u, v) du dv ffw;, v'p(u, ) dudy — o
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is positive definite, where
(6.8) p(u,v) = (2m) " exp [—3(’ + o).

(6.5) is the condition of size; and (6.8), (6.7) are the conditions of unbiasedness.
If we have such a region, then by Theorem 1, wo is an unbiased critical region
of type D for testing (u;, w2) = (0, 0). In the u, v-plane, the likelihood ratio
test indicates the region u* + v* > o’ for testing H, , where a’ is determined so
as to give size a to the test. Since 4’ and »* are each independently distributed
as x” with one degree of freedom, u® 4 ¢’ is distributed as x* with two degrees
of freedom and so a’ can be obtained from a x’-table. We shall take * + »* > o’
as the region w; and shall verify that k&, , kz, ks in (6.4) can indeed be deter-
mined so as to give rise to this region. We will also see that (6.7) is satisfied
for this region. Then since 4’ + v* > o’ obviously satisfies the condition (6.6)
by symmetry considerations, and a’ has been determined so as to satisfy (6.5),
this will prove that «* 4+ »* > o’ is an unbiased critical region of type D for
testing H,.
One can easily verify that

(6.9) f./;z-maaz w'p(u, v) dudy = ffuzﬂz;az v'plu, v) du dv = a(l + 3d¥);

and since p(u, v) is an even function,
(6.10) f f wp(u, v) du dv = 0.
u24v2>a2

In view of these relations, we see that the matrix in (6.7) is

(adVZ 0 >
0 ad’ /2 ’

which is obviously positive definite. Also, (6.4) can now be written as

2 p— —
ORI e ]2+ Vi, 4o Ve,
o 2 a1 as

102
If we choose ki = nmad’/(20i03), ks = 0, ks = 0, the inequality (6.11) becomes
(6.12) w4t = dh

and this proves our result.

This result can in turn be used to find an unbiased critical region of type D
for testing a simple hypothesis about the means of a bivariate normal popula-
tion with known covariance matrix, since it is possible by an orthogonal trans-
formation of variables to transform this problem into the one we have solved.

-The result of (6.12) can also be immediately extended to find an unbiased
critical region of type D for testing a simple hypothesis about the means of &
independent normal populations with known variances; and then this latter
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result can be used to find a type D region for testing a simple hypothesis about
the means of a k-variate normal distribution with known covariancé matrix.
The type D regions in these cases turn out to be the likelihood ratio tests.

My attempts to find an unbiased critical region of type D for testing a simple
hypothesis about the mean and variance of a univariate normal distribution on
the basis of a random sample of size n were unsuccessful because I was unable
to evaluate the integrals occurring on the left side of our basic inequality (4.19)
over the conjectured region; there were also other difficulties involved. One
can, however, use the result of (6.12) for large sample sizes to approximate
a type D region for testing the simple hypothesis (s, ¢®) = (uo, 05). Since
Z = 711 > iz and (8) = 7;% D ic1 (@ — %) are joint sufficient statistics
for » and o*, just as we reduced the problem of testing a simple hypothesis
about the means of two normal populations to a problem in the &, Z.-plane by
use of (6.2), so we can reduce the problem of testing (u, ¢*) = (w0, 03) to a
problem in the #, (s')’-plane. The density function of # is normal with mean
uo and variance og/n under the null hypothesis, and the density function of
(n — 1)(¢")*/os is that of x* with (n — 1) degrees of freedom under the null
hypothesis$ since & and (s')* are independently distributed in a normal popu-
lation, we can use these two density functions immediately to obtain the joint
density function of Z and (s)’. The problem of finding a type D region in the
&, (¢')’-plane is, however, the one I was unable to solve. But we know that
(n — 1)(s')*/o¢ has a x* distribution with mean (n — 1) and variance 2(n — 1)
and we also know that a x* distribution with m degrees of freedom is asymptoti-
cally normal with mean m and variance 2m; hence we know that (s')* is asymp-
totically normally distributed with mean of and variance 2¢5/(n — 1) under the
null hypothesis. If we approximate the density function of (s)* by a normal
density function with mean o and variance 2¢4/(n — 1), and let

w = V(@ — Ito)’ Vn = 1((s"* — o3)

v = —
ao V2 crg ’
then with this approximation our problem becomes that of finding a region wo in
the u, v-plane satisfying (6.4), subject to conditions (6.5)-(6.7), where p(u, v)
is given by (6.8), and in (6.4) my = n,mg = (n — 1), o1 = 00, o2 = \/203. For
this problem we have seen-that the solution is given by (6.12). In the Z, (s')*-
plane this gives the region

n(E — w)? (= 1D((s)? — ab)?
610 RSB B R
0

(4]

(6.13)

where o’ is determined from a x’-table with two degrees of freedom. For large
sample sizes this region should be a good approximation to an unbiased critical
region of type D for testing (u, ¢*) = (o, 00)-

7. Remarks on the theory of .testing composite hypotheses with two or more
constraints. A composite hypothesis with % constraints is a hypothesis which
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specifies the values of k& parameters out of a total of s parameters, where k < s.
At present the theory of composite hypotheses with two or more constraints is
in much less satisfactory shape than the theory of composite hypotheses with one
constraint. (For the latter see Scheffé [5] and Lehmann [6].) We can define an
unbiased critical region of type E for testing a composite hypothesis with %
constraints (k > 2, k < s) as follows:

DEFINITION. Let ® = (61,02, , Oy Opga, ==, 0,) = (0,02, -+, 0, 7)
denote the parameter point in the parameter space Q which is a subset of an s-dimen-
stonal Euclidean space, where 7 = (6441, - - , 05) denotes the nuisance parameters
(i.e., the parameters unspecified by the hypothesis). The hypothesis H, states ©
lies in the k-dimensional subspace w of Q defined by 0§ = 6,, where § =
01,65, --,6) and 6y = (v, O, -+, o). Then wo ts said to be an unbiased
critical region of type E for testing Hy, if for all 6 in w (i.e., all (6o, 7)):

1. B8(6y, 7 | wo) = a, where a s mdependent of 73

II. ﬁ(eo,fl’wo) OfOT'L 1, .-, k;

(Su(ao y T | wp) - Blk(ao ' T l Wo)

II1. :

(60 , 7| wo) -+ Buk(Bo, T l Wo)
IV. det B, > det B, for any region w satisfying I-III.
These regions of type E should prove useful in the further development of
the theory of composite hypotheses with two or more constraints.

> = B,, 18 posttive definite;

I am deeply indebted to Professor Henry Scheffé for having suggested this
line of research to me and for numerous very helpful suggestions he has given
me in the course of pursuing it.
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