ON THE DURATION OF RANDOM WALKS!

By WorLrganG Wasow

Institute for Numerical Analystis

Summary and introduction. In a recent paper [1] the author investigated the
mean number of steps in random walks in n-dimensional domains. The purpose
of the present article is to generalize those results by applying similar methods
to the study of the moment generating function for the number of steps and of
its distribution function. As an application explicit asymptotic expressions for
the variance in special cases and estimates for the likelihood of very long walks
are obtained. .

The author wishes to express his thanks to Professor R. Fortet for many
helpful discussions.

The walks take place in an open bounded domain B of n-dimensional Euclidean
space E with boundary C. A point moves in E according to a given transition
probability law F(y, ). Here z and y are points of E with coordinates z;,7 = 1,
2,---,nandy;,¢ = 1,2, -+, n, and F(y, z) is the probability that a jump
known to start at 2 end at a point all of whose coordinates are less than the
corresponding ones of y. The function F(y, z) is a distribution function with
respect to y, and it is assumed to be Borel measurable with respect to all vari-
ables. Let N = N be the number of steps in a random walk that begins at a
point z of B and ends with the step on which the moving point leaves B for the
first time. If the probability of the moving point eventually leaving B is equal
to one, then N is a random variable. It is called the duration of the walk. It is
useful to extend the definition of N by setting

N, =0, zeE — B.

1. The moment generating function of the duration. The probability distribu-
tion of the duration, given by the functions

(1.1) (@) = Pr{N, = k}, k=012:--,
" satisfies the recursion relations

) < | PO @D, a2,
(1.2) 0, zeE — B,
0, z ¢ B,
Do(x) =
zeE — B.

’
Here and in the sequel all Stieltjes differentials are formed with respect to the
first argument.

1 The preparation of this paper was sponsored in part by the Office of Naval Research.
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We need some hypothesis sufficient to ensure the relation D pp pi(z) = 1
and the existence of the moment generating function of N, . This is the purpose of

AssumpTiON A. There exists a positive integer m and a positive number ¢ < 1,
both independent of x, such that y

Pr{iN,>m} <c¢
for all x in B.

From this assumption, which is slightly more general than the corresponding
condition in [1], the equality) o pi(x) = 1 follows by a simple argument
similar to that in [2], pp. 431-432. In fact, the last inequality implies

Pr{N, > jm} < ¢’
and therefore
nj
lim D pi(x) = lim [l — Pr{N, > jm}] > lim (1 — ¢/) = 1.
v k=0 J—r0 j=e

The aim of this section is the following theorem:

TarEOREM 1. If Assumption A is satisfied, then the moment generating function
#(s, ) = D70 €pi(x) of the duration N, exists in a complex neighborhood of
s = 0 and 13 the unique solution of the integral equation problem

¢ [ 66,0) dF@,3), zcB,

1, zeE — B,

Because of later need we prove a slightly more general result.
Lemma 1. If Assumption A s satisfied and f(x) is a real function such that
|f(x) | < K in E — B, then the integral equation problem

¢ f u(s, y) dF(y,x), =zeB,
B

f@), z¢E — B,

possesses for Re s < so(so > 0) a unique solution. This solution satisfies the in-
equality

(1.5) | u(s, z) | < ¢(Re s, 7)- K, z ¢ B,
where ¢(s, ), the moment generating function of the duration, is the solution of

(1.3).
Proor. Assume, at first, that f(x) is nonnegative, and that s is real. Set

0, z ¢ B,
uy(x) =
f(@), z¢E — B,

(1.3) é(s, ) =

(1.4) u(s, z) =

¢ [w(y) dF@, ), weB,
E

f), zxe¢E — B.

(1 6) uk+1(x) =
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Then
@a.7) u(x) = ée"qj(x), z ¢ B, k=12 ...,
where, for  in B, )
(L8) q(@) = ]; _ @ dF(y, 2), gina) = fB 4;(y) dF (y, 2).

The ¢;(x) are nonnegative, and the ui(x) form therefore a nondecreasing se-
quence. Iterating (1.6) m times we find, for &k > m,

1.9) Uppa(z) = ™ f' Ur—m(7) AF m(y, 2) + xn(®), z ¢ B,
where
Fit,2) = F@, ), Falty2) = [ Fuasly, 2) dFGe, 2),
and the x.(z) are bounded and nonnegative. If z is in B, then, by Assumption 4,
LdFm(y, z) = Pr{N. > m} <c¢ < L

Let
Ly = L w b. w(x), M = L u b. xn(z).
zeB

zeB
(Lx and M depend on s.) Then, by (1.9),

Liy1 < e™Lic + M.
Hence,

Ly < M/(1 — ™),

and, therefore, the nondecreasing sequence ux(z) is bounded for all 8 for which
e™e¢ < 1. Thus, it tends to a limit u(x) = u(s, «), which satisfies (1.4) and can
be written, by (1.7), in the form

(1.10) wls 1) = 3 e @),
=

Since this is a power series in ¢’ it converges for complex s also, as long as Re s <
so = —log ¢/m. Furthermore, we see by comparison of (1.8) and (1.2) that for
1(z) = 1 we have qi(z) = pir(x) and u(s, ) = ¢(s, z).

To prove the uniqueness, it suffices to show that f(x) = 0 implies u(z) = 0.
By iteration of (1.4) we find, for f(z) = 0,

u@) = e [ uy) dFaly, o),
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and hence
Lub |u@)| <|e™|cLub|ul)].
zeB . yeB

For values of s such that | €™ | ¢ < 1 this implies, indeed, that u(x) = 0.
If f(z) is not necessarily positive, then we consider the integral equation
problems

¢ f u® dF  in B,
m = E

K inE — B,

¢ f u®dF  inB,
@ = B

K — f(xz) inE — B,

which do have unique solutions by what has been proved already. w =
u® — u® is therefore the unique solution of the original problem. We note that
this argument also extends the validity of the formulas (1.8) and (1.10) to the
case that f(x) is not necessarily positive.

Finally, the inequality (1.5) follows easily from (1.8), (1.2), and (1.10), since

|u(e) | S 3™ 0@ | S K 3 ™ y(a) = Kg(Re 5,2).

This completes the proof of Lemma 1. Theorem 1 implies that all moments
M (x) of N, exist. ’

TaEOREM 2. The kth moment M (x) of the duration N satisfies, for k > 0, the
integral equation problem

fx M(y) dF(y, x) + fu(x), e B,

(1.11) Mi(z) =

0, zeE — B,
where
(1.12) fil@) = § (- n* <;‘> Mii(z).

Proor. From the definition
Mi(z) = Zojk i(x)
J=
follows by an application of (1.2) that, for z in B,

(113) Lm@wm@=gu—mmm
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Expansion of the binomial expression in the second member followed by an
interchange of summations proves the theorem.

These integral equations for the moments form an inductive sequence, since
fi(x) depends only on the moments,of order j < k. The equation for M;(x) was
the main subject of [1].

2. An asymptotic differential equation for the moment generating function.
In the important case that the transition probability F(y, x) is strongly con-
centrated about z, the integral equation (1.3) will now be shown to be approxi-
mately equivalent to a differential equation. To do this it will be assumed, as
in [1] and [2], that F(y, ) = F(y, x, u) depends on a small positive parameter
p in such a way that the following three hypotheses are satisfied.

AssumprioN B. Denote by ai(x, p), ba(z, u), ¢, k = 1,2, -+, n, the first and
second moments of F(y, x, u) about x. Then

2.1) ai(@, u) = ai(@)p + o(u),
2.2) bi(@, ) = Ba(x)s + o(u).
These relations hold uniformly for x in B. The ai(x) and Ba(x) are twice continu-

ously differentiable in B + C.
AssumprioN L. Let K (x) denote the sphere of radius r with cenfer at x. Then

f (yt - xs)(yk - xk) dF(y, x, [.L) = O(y), ’L.’ k = 1’ 2’ cee o,
E—K,(z)

uniformly with respect to x in B, for any fixed r > 0.

These assumptions could very likely be weakened to the equivalent of the
analogous hypotheses in [12].

AssumprioN E. The matriz {Ba(x)}, which is obviously nonnegative, s posi-
tive definite in B + C.

For what follows we also require a certain degree of smoothness of the
boundary.

AssumprioN S. The boundary C has a continuously turning tangent plane.
(This restriction could be considerably weakened; e.g., by inserting the word
“piecewise”, cf. [2], p. 438.)

We prove first

Lemma 2. Assumptions B, L, and E imply Assumption A, at least for suffi-
ciently small u.

Proor. To simplify the notation we give the proof first for the one-dimen-
sional case, in which we can write «, 8, z, y for a;, Bu, %;, ¥; . Using Assump-
tions B and L we have, for any ¢ > 0,

o z+e
By = L (v = o dF@ 5,0 + o) = [ g — 2" aF

z e z
+ fH (y — 2)* dF + o(w) Sef (y — 2 dF—-efH(y—x) dF + o(u)

Z:
z
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and also
z+e z
°"‘=f, (y—x)dF-hf’_‘(y—x)dF+o(u)-

Multiplying the last equality by e and adding it to the preceding inequality,
we find

z4-¢
B8 — ea)u + o) szefz (y — ) dF.

Since B(x) > const. > 0 in B, by assumption E, we see, by first choosing e
sufficiently small, that for small p

z+e .
f (y—2)dF >C-n, ze¢B,

where C is an (arbitrary) positive constant.
On the other hand, for u* < ¢,

f:h (y — 2) dF = f:ﬂ’ (y — 2) dF + f,:z == df <u'+e fa:u’ ar.

Combining this with the preceding inequality, we have
Priy — z > 4’} > Cu, ze B,

where C; is another constant. Hence Assumption A is satisfied, if m is chosen
greater than the diameter D of B divided by 4’, and ¢ = 1 — (Cip)” n?,

In more than one dimension the same argument can be applied in any one
of the coordinate directions. The changes necessary concern only the notation.
Thus the lemma is proved.

Denote by ¢(s, %, u) the moment generating function of the random variable

t = tz = #Nz .
Obviously
(23) (s, 7, 8) = ¢(us, 7, u).
Let furthermore L{u] be an abbreviation for the operator
z u z ou
=1 . gw () 22
©4) Liu) = 3 ’:L:,l Bu(®) 5o + g o3(a) 7«

Then the following theorem will be proved.

TreoreM 3. If Assumptions B, L, E, and S are satisfied, then the moment
generating function (s, x, u) of the random variable t = uN satisfies the limit
relation

(2.5) lim ¢ (s, z, p) = u(s, @)
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uniformly for z in B, | s | < 81, where u(s, z) s the solution of the problem

Llu] + su = 0, z ¢ B,

26) u=1 zc¢E—B.

Before we can prove the limit relation (2.5) we have to prove separately the
weaker statement that ¢ (s, z, u) remains bounded as u — 0.

LemMma 3. If Assumptions B, L, E, and S are satisfied, then there exist two
positive constants C and C’ , independent of u, such that

(2'7) I'P(S,-”?,M)ISC fOT ISISC’-

Proor. From the results of [1], in particular from Lemma 3, Theorem 1, and
Theorem 2 of that paper, it follows that the solution of the problem

, f,M(y) dF(y, z, u) + f(z), zeB,

2.8) M(x) =

0, zeF — B,
satisfies the inequality
29) | M@) | < Cilub | f@)/m

where C; is a constant independent of p. This remains true if f(r) depends
boundedly on u. We wish to apply this inequality to the integral equations
(1.11). To that end we first note that

(2.10) [fi@) | £ kMi(z),
for fi.(z) can be written, by (1.11) and (1.13), in the form

7&) = Mia) — }; G- 1 pia) = grf - (G = V'lpta)

=k 2 * " pla),
=1
where j — 1 < j* < j, and, therefore,
0L filzx) <k jZ;f"‘ pi(x) = kMi(2).
Applying (2.9) and (2.10) inductively to (1.11) we obtain

(2.11) | Mi(x) | < kU(C/w)".

Substitution of this inequality into the formula

\b(sr T, l‘) = kz:o % (ﬂs)k
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yields

1
k
[ (s z,pm)| < kZO:.(C’l 8" = T

for | s| < Cy. This proves Lemma, 3.

Proor or THEOREM 3. The basic idea of the proof is similar to that of Theorem
2 in [1] and thus to Petrowsky’s reasoning in [2]; we show that u(z) satisfies an
integral equation little different from that for y(s, z, p), and conclude from that
fact that the two functions are nearly the same.

We first replace u(x) by a slightly different function u;(x) defined in a larger
domain B”, in order to avoid extraneous difficulties near the boundary C. This
can be done by constructing a twice continuously differentiable mapping

$2=f($,5), z ¢ B, t=12-:--,mn,

which is continuous in §, for § > 0, together with its first and second derivatives
with respect to z, and has the following properties.

(a) It reduces to the identity for & — O.

(b) It is, for all &, the identity transformation in a subdomain B’ of B

that tends to B as § — 0.

(c) It maps B onto a domain B” containing B in its interior for § > 0.
For the explicit construction of such a mapping with the help of Assumption S
we refer to [2].

If we define us(z) in B by

u(z’) = u(x), z ¢ B,

then this new function is defined and twice continuously differentiable in B”.
It tends to u(x), uniformly in B, together with its first and. second derivatives.
We extend the definition into the whole space E by setting

u(z) = 1, zeE — B.

Next, it can be shown that, for any ¢ > 0, we can choose first a § > 0 and
then a po > 0 such that, for | s| < s,

(212) [ ) dF @, 2) = (1 = psyuno) + uals, =, w), seB,
where
(2.13) l 9(s, =, p) l <eg

provided u < po . The proof of this statement resembles so much the analogous
arguments in [1] and [2] that it will be omitted here. (Formula (2.12) is es-
sentially the result of expanding u;(x) about 2 by Taylor’s formula up to quad-
ratic terms and applying Assumptions B and L.)



RANDOM WALKS 207

Because of the definition of u;(x) it can also be assumed that § has been
chosen so small that

(2.14) |us —u|<e xeB,
(2.15) [us — 1] < ¢ zeE — B.
For yuy sufficiently small,
I(I—M—C—FJ)TQ[S[JG, st’ v < M.

Therefore we can write, instead of (2.12),

¢ [ w@) dF@, ) = w@ + uhts, , u), z¢B,
with
(2-16) I h(s, x, l‘) | < 3e.

We now split u; into the sum u; = us® + u§?, where

@17)  uf® = ¢ f u®dF in B, uf = u in E— B,
E

@218) u® =& f uPdF +uh in B, u® =0 in E— B.
. E

To estimate u” we subtract it from (1.3) with su substituted for s, and use
(2.15), (2.3), Lemma 1, and (2.7). This yields

(2.19) lus? — ¢ | < CKe, zeB.
This implies, in particular, that us” is bounded as u — 0. Therefore (2.18) can
be written, for sufficiently small g , in the form

u® = f u® dF + p(u® — h*) in B, u® =0 in E-— B,
E
where
Ih*l = lh*(S,x,#HS 4e.

Application of (2.9) yields
Lub. |4 | < Ci(| s Lub. | uf? | + 4e),

ie.,
(2.20) | 4? | < 4¢C/(1 = Ci|s])
for|s| < s < 1/Cy. Combining (2.19) and (2.20) we obtain the inequality

|u — ¢ | < const. ¢, z ¢ B,

which proves Theorem 3.
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TareoREM 4. If Assumptions B, L, E, and S are satisfied, then the kth moment
My(z, 1) of the duration N, satisfies, uniformly in B, the relation

lin}) l"kMk(xa u) = m(x), k>1,
B

where the my(x) are defined recursively by the conditions

mo(z) = 1,
and, for k > 1,
Limy] + kmy—y = 0, z ¢ B,

me = 0, zon C.

Proor. The solution u(z, s) of (2.6) is connected with the functions m(x)
by the relation .

us,z) = 3. & g
= J!

as can be seen by replacing u(z, s) in (2.6) by its series in powers of s and collect
ing coefficients of like powers. By Theorem 3 the function

¢(87 X, V‘) = i “‘—'——]Mj(x) sj
=0 7!

tends uniformly to u(x, s) as u — 0; hence the coefficients of the first power
series are the uniform limits of those of the second. This proves Theorem 4.
For j = 1, Theorem 4 was proved in [1].

3. An asymptotic differential equation for the distribution function of the

duration. Let
P(t, z, u) = Pr{uN, < t}

be the distribution function of the random variable uN. From Theorem 3 we
conclude by means of the continuity theorem for moment generating functions
(see [3]) that there exists a distribution function Q(¢, =) of ¢ such that

3.1) lllI: P, z, p) = Q, x)

at all continuity points of Q(, ) with respect to ¢, and that u(s, z) is the mo-

ment generating function of Q(, z).
The probability

3.2) Pz, 0) = 2. pi(a)
k<tlu
satisfies, because of (1.2), the recursive relations
P(t+l‘,x5”)='/;P(t7y7”')dF(y;x)")y ze B, t=0,p 24, -,

33) P@O,z,p) =0, z ¢ B,
P@,z,p) =1, z¢E — B, t> 0.
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From these and (3.1) it is easy to obtain, ¢n a purely formal way, the differential
equation (3.5) for Q(¢, ). The same result can be made plausible by setting

(34) u(s, 2) =. ‘[ ) e dQ(t, )

in (2.6) and operating formally on the Stieltjes differential. Qur aim in this section
is to give a proof of (3.5). In spite of the plausibility of the result the proof is
somewhat long, because the problem combines the features of what Khintchine
calls, in [4], the first and second diffusion problems.

A feasible approach to our problem, different from that of this paper, could
be based on the remark that u(s, ) and therefore Q(¢, =) depend only on the
functions «;(z), Bu(x), so that F(y, z, ) can be chosen in many different ways
as far as the properties of Q(¢, ) are concerned. (This is an instance of the
“invariance principle’’, used systematically, in a different context, by Kac
and Erdos, cf. [5].) The most natural choice for F(y, z, ) is the one obtained
from the continuous Markov process associated with the differential equation
(3.5) by considering that process at discrete time values ¢ = 0, g, 2u, « - - , only.
This approach has not been chosen here, first, because we wish to preserve
uniformity of method, and secondly, because the theory of such Markov proc-
esses does not seem to have been established in sufficient completeness for the
n-dimensional case. (In one dimension, the proof that such a continuous process
exists was given by Feller in [12]. This has been partially generalized to #n dimen-
sions by Dressel [6]. The proof that the duration of this continuous process
satisfies the differential equation of (3.5) in the one-dimensional case is con-
tained in the article [13] by Fortet.)

TaEOREM 5. If the assumptions B, L, E, and S are satisfied, then

lim Pr{uN. < t} = Q(, z)

p—0

exists and is the solution of the differential equation problem
L[Q] —f’g=0, t>0, =zxeB,

(3.5) Q=1, t>0, z on C,
Q=0, t=0, =z¢B.

The convergence is uniform in B 4 C, for any interval 0 < ) < t < ;.

The proof of this theorem is based on two lemmas.

Lemma 4. The distribution function Q(¢, x) is a continuous function of all
arguments combined, for t > 0,z ¢ B + C, and for t = 0, x ¢ B.

Proov. Let

. 1 (7
(3.6) gz, T) = 57, u(ss, z)e~"* ds.
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It is known that this function is real and tends to a limit as T — «. For fixed
z the distribution Q(¢, x) is continuous in £ if and only if

3.7 lim g(¢, z, T) = 0.
T—r00
(See, e.g., [7], p. 24, for these statements.) Also,

(3.8) lg¢t, 2, T <1,

since u(7s, x), as a characteristic function, is numerically less than one. By
(2.6) the function ¢(¢, x, T') satisfies for all 7 the differential equation

3.9) L[g]—gg= . zeB, —w << .

From (3.8) and (3.9) we can conclude (cf.-[8], p. 383-384) that dg/d¢ is uni-
formly bounded for all T in any finite {-interval and for x in any closed subdomain
of B. Therefore the limit of g, as T — «, is a continuous function of £. On the
other hand, since Q(¢, x) as a distribution function has at most a denumerable
set of discontinuities, limr_,« ¢ is zero for fixed x, except possibly at a denumerable
set of {-values. Being continuous, the limit of g must therefore be zero every-
where in the domain considered, i.e., @(¢, z) is for all  in B and for all ¢ a con-
tinuous function of ¢. (The result of Gevrey [8], referred to above, is proved in
that paper only for differential equations whose second order terms form
Laplace’s operator. A generalization sufficient for our needs can be established
by combining Gevrey’s arguments with the results of [6].) In E — B the distri-
bution functions P(¢, «, u)—and therefore Q(¢, z), their limit as u — 0— are
identically 1 for ¢ > 0. Hence Q(¢, ) is, for £ > 0, a continuous function of ¢
in the closed domain B + C.

To prove that Q(¢, =) is continuous in z also, it suffices to remember that
u(ts, x), its characteristic function, is a continuous function of z at s = 0. By
the continuity theorem for characteristic functions ([7], p. 30) the correspond-
ing distribution function (¢, «) is therefore continuous in « for all ¢ > 0. The
continuity is uniform with respect to x in every continuity interval of ¢ ([7],
p. 31) and therefore Q(¢, x) is continuous in ¢{ and = combined for ¢ > 0 and
zin B 4 C, as well as for ¢ = 0, ¢ B. This proves the lemma.

CoroLLARY. The convergence of P(t, x, u) to Q(¢, ), as u — 0, is uniform for
zm B+ Cand0 < tp <t < 4. For, by a similar argument to that used in
the preceding paragraph, it is seen that P(¢, x, u) is a continuous function of
all arguments combined at p = 0, and this implies uniform continuity in the
designated domain. This proves the last sentence of Theorem 5.

Lemma 5. Let wip(x, u) satisfy the recursive relations

wenn(e, 1) = [ usy, w) AP, 3, 0) + e, w), veB,
(3.10) z
wz, ) = bilz, ), v ¢ E — B,
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and let | ax |, | bx|, and | uo | be less than a constant M. Then, if Assumptions B,
L, E, and S are satisfied, the inequality

‘uk(x).ﬂ)l S cC-M

holds, where C s a constant independent of M.

Proor. Assume, at first, that b, and u are identically zero, and that a; =
1/u. We denote the solution for this special case by uy . It was proved in [1],
Lemma 2, that us (x) tends monotonically to the first moment Mi(z) of N.,
as k — . From Theorem 4 we know that lim,_.o uM1(x) = m(x), uniformly in
B. Hence, 0 < ux < C/u.

Next, we drop the assumption a; = 1/u and call the solution of the integral
relation (3.10), in that case, u{". Then the function ui* = pMuy — u® solves
the problem ’

u,ff1=Lu,f*dF+u(M—-ak) in B,
ug*=0 in E—B ug=0 in B.

Since M — a; > 0, it follows that uz* > 0 in B for all %, i.e., u{® < const. M.
The inequality —u{® < const. M is proved analogously. Thus the lemma is
proved in this special case.

Now we take the solution .us” (z, u) of the special case that a; = uy = 0.
Here we obtain immediately by recursion the inequality |u(z, u)| < M.
The solution u{® (2, u) of the special case a; = b; = 0 also satisfies trivially the
inequality | u® (z, )| < M.

Since the solution in the general case is the sum of three solutions corre-
sponding to the three special cases, the lemma is proved.

Proor or THEOREM 5. Instead of comparing P(f, x, u) directly with the

solution of (3.5) we introduce the solution » of the problem

3.11) L] — g’_’t’ =0 in B, (>0, =ze¢B,
(3.12) v(0, 2) = Qb , »), z ¢ B,
(3.13) v, z) =1, zeE — B.

By this device we avoid difficulties connected with the discontinuity in the
boundary conditions in (3.5) at t = 0,z ¢ C.

As in the proof of Theorem 3 we replace v({, z) by the function
v5(¢, ) defined by .

vs(t, ') = o(t, ), z' ¢ B”, t> =5,
vs(t, ) = 0, zeF — B,
where z’ is the function of x and 8 introduced in Section 2, and
{ t for t> 3,

(3.14) v = .
t— G-t for 0<t<s.
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This function v;(z, t) possesses continuous second derivatives with respect to
the z; and ¢ for z ¢ B” and t > —8&°. It is therefore possible, as in Section 2 and
in [2], to apply Taylor’s formula with quadratic terms to v;(, ¥). An applica-
tion of Assumptions B and L yiele, similarly as in [1] and in the proof
of Theorem 3,

(3.15) fx u(t, y) dF (y, z, p) = vs(t, ) + pLlvs] + pg(t, , n, 8), z ¢ B,

where the function g, has the property that for every ¢ > 0,8 > 0,4 > 0, a
o > 0 can be found such that
(3.16) |t 2, 1,8 <e xeB4+C, 0LZt<t, B< poe
Now by the definition of v; it is possible to choose § so small, independently
of the value of u, that
0
L[”ﬁ] = ‘gvf + g2(t, Z, 6),

where gq(t, z, 8) satisfies the same inequality as ¢:(¢, =, u, 8). Hence

(3'17) I"L[VB] = vﬂ(t + u, CU) - vﬂ(ty x) + ”'93(t7 T, 1, 8)7

where, for a certain positive u; < o, depending-on § and e,

(318) 93(t71;)“;6).<-25’ x8B+C’ 0<t<t, p=< .
Combining (3.17) and (3.15) we find

(3.19) vt + p, ) = ‘/;’vﬁ(t’ y) dF (y, =, u) + wh(t, z, u, 9), z e B,
where

(3.20) | A, x, 1, 8)| < 3e, zeB+ C, 0<tLt, e m.
Subtraction of (3.19) from (3.3) yields for

(3°21) w(t7 z, I“) = P(t + b,z ll-) - v‘(t’ il?)

the integral equation problem

(3.22) Wt + w2, 4) = fE w(t, y, u) dF (y, =, p) + ph(, 2, u, 9),

‘ zeB, t>0,
(3.23) wt, z, n) = w2, n), zeE— B,
(324) w(O) Z, F‘) = wz(il?, /J,).
Here

(3°25) lwl(t’ z, N)] = IP(t + b » &y IJ') - Ua(t, x)l = | 1 - v&(t, x)l S. €
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forxre E — B,0 <t < t, provided 8 has been chosen sufficiently small (in-
dependently of w). This follows from (3.13) and the continuity properties of
vs(¢, ). Similarly we have, if § and u,; are, independently of each other, chosen
sufficiently small, .

lwﬁ(xsl‘)! = IP(&)’x’I‘) —vs(O,x)lS IP(tO:x;l‘) "Q(t()’x)l

(3.26)
+ | v(0,z) — v:(0,2)] <€ zeB+C.

If we set ¢ = ku and write
w(ku, z, ) = u(z, w),

we can apply Lemma 5 to formulas (3.21) to (3.26) with the result that, if 8 is
sufficiently small,

IP(t + tﬂ;x’ "‘) - v&(t) x)l S 405,

forxeB+C,0<t<t,andp < .

Finally, since v; differs arbitrarily little from » for sufficiently small é, and e
was arbitrary, it follows that Q(¢, ) = lim,, P(t, , u) is, for allz ¢ B, the solu-
tion of the differential equation problem (3.11) to (3.13). By Lemma 4, Q(t, =)
approaches its values on C and its initial values for ¢ = 0, as x approaches C
or t — 0, respectively, and is, therefore, indeed the solution of problem (3.5).

4. Some applications. If L[] is self-adjoint, then the solution of (2.6) can be
calculated in the usual way by expansion in terms of the orthonormal eigen-
functions u;(x) of L{u] + Au = 0, corresponding to the eigenvalues N = A;,
which are all real and positive. To do this we set ¥ = w + 1 in (2.6) and solve
the resulting problem

Llw] + sw= —sinB,» =00nC,

by the standard methods. (Cf., e.g., [9], p. 312. The argument for ordinary
differential equations given there can be extended to partial differential equa-
tions whenever the existence of Green’s function is known.) We find

we ) =1+ wis ) = 1+ 5 —— [ wly) dy-w;@
=LA — 8JB

4.1) w
=1+ 3 (2 - 1) [ w) druw.

The series o1 f u;j(y) dy-u;(x) is the generalized Fourier series of the function
B

that is identically one in B. If this series actually converges to 1 in the interior
of B, formula (4.1) simplifies to

(4.2) uls,2) = 2 N / ui(y) dy-u;(x), ¢ B.
=LA —sJe



214 WOLFGANG WASOW

From here on we assume explicitly that (4.2) is valid:
AssumprioN C. The series 2oy f u;i(y) dy-u;(x) converges for all x € B.

B,
In this case we can give an explicit expression for the distribution function

Q(, ), for
uen) = [ e T [ w) dyu@e™ d,
0 J=1 B
and therefore, because of (3.4),
43) Qo) =1 - [ u dyu@e™
j=0 /B .

This proves
THEOREM 6. If the Assumptions B, L, E, S, and C are satisfied, if L{u] is self-
adjoint, and if the lowest eigenvalue N of Llu] + Au = 0 s stmple, then

(@) PriN. 2 B} = u@) [ )yt 06) + alby, z, w),

where
lim a(, z, p) = 0
r—0

uniformly in t and x.

The leading term in (4.4) is thus a good approximation to Pr{N, > k} in a
range of the variables uk for which ku is so large, and at the saie time p s0
‘small, that the two remainder terms can be neglected.

The preceding calculations have some points of contact with those of M.
Kac in [10], Section 10. The results there refer to the special case of Brownian
motion. Also, an integral equation is used instead of (2.6), which vermits a
considerable relaxation of the condition S.

As a special application we consider random walks for which L[u] reduces to a
constant multiple of the Laplacian. It can then be assumed without loss of
generality (see [1], Section 4) that u is the mean square of the step length and
that

(4.5) Lyl = 2—1_71, Au.

A domain B for which all (juantities involved can be calculated explicitly is the

n-dimensional sphere of radius a with center at £ = 0. A routine calculation
leads to the formula

(4.6) uls, z) = (£>l—m Jniz-1(V2nsr) /T npo-1(\/2ns0a)

for the moment generating function. Here r = i zht and Ji(2) is Bessel’s
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function of the first kind. The series for u(s, z) in powers of s,
2

2
u(2) = 1+ @ = s+ =T [0 + Ha* — 'l + -0,

and an application of Theorems 3 and 4 lead to the expressions

lim gE[N.] = o — 7,
p—0

_2
n+4 2
for the mean and the variance of the duration. The relative error e[N.], i.e.,
the standard deviation of N, divided by its mean value, satisfies therefore the
relation

. _ 2 a+r
@) tim N = 4/ 2 4/ 5

It should be noted that the relative error is a decreasing function of the number of
dimensions.

We omit the straightforward calculation needed for the determination of the
eigenfunctions u;(xr) and eigenvalues \; in the present case and state only the

results:
Let p = p; be the jth positive zero, in order of increasing size, of the function

Jnj2-1(p) ; then

hnt]) F'2E[N s — E[N.]] = (04 - 'r‘)

Nj = p3/2nd’.

Assumption C is satisfied (cf., e.g., [11], p. 591) and

1-n/2 ) .
(4.8) Q(t, x) — 1 — 2 <r) Z JulZ—l(PJr/a) e-Pi‘/2M’
a =1 o wi2(ei)

For n = 2, we find, e. g., using the approximation (4.4), for small 4, and Theorem
4 withk = 1,

(4.9) Pr{N, > 2E[N,)} ~ 1/11.
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