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It is interesting to note from Table I that in small samples the average length
of confidence interval for the G test compares favourably with that for the
t-test. The test has the advantage that it is easier for computation.
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A PROPERTY OF SOME TYPE A REGIONS

By HerMaAN CHERNOFF

Unaversity of Illinots

1. Summary. In a test of an hypothesis one may regard a sample in the
critical region as evidence that the hypothesis is false. Let us assume that for
some reason it is desired to increase the critical size of the test, i.e., to make
rejection of the hypothesis more probable. Then one may expect that an ob-
servation which led to rejection in the first test should still lead to rejection in
the new test. In other words, one should expect W, D W, if @ > o, where
W . is the critical region for the test of size «. An example is given where regions
of type A" are uniquely specified except for sets of measure zero, but fail to have
this property.

2. Example. We shall consider type 4 regions for the hypothesis 8 = 0 where
our sample consists of one observation with density

oz, 6) = @2r)a + 0)* exp [— (z — 6)°(1 + 60)/2] for 8 > —1.

! Regions of type A were introduced by Neyman and Pearson (see [1]).
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a'p(z, 6)

ag

Since p(z, ) permits differentiation under the integral sign, i.e., /
w

:—02 f p(z, 8) dx for 7 = 1, 2, then W is a region of type A of critical size o for
w
the hypothesis § = 0 if

) [ @0 dz =,
@ [ 289 4 — o,

and if for every region W’ satisfying equations (1) and (2)

2 2
9'plz, 0) ds > 9" p(z, 0) dz.

@) w  00% wr 962

As a consequence of the results of Dantzig and Wald which made use of the
Neyman-Pearson Fundamental Lemma (see [1] and [2]), it follows that there is
a region of type A for any @, 0 £ @ = 1, and that a necessary and sufficient
condition that W be a region of type A of size « is that equations (1) and (2)
hold and that there exist real numbers %; and k. so that, with the possible ex-
ception of a set of measure zero,

a*p(z, 0)
96

ap(z, 0)

7] forzin W

4) > kip(x, 0) +
and the opposite inequality holds for # not in W.

We shall show that for « close to zero, a critical region of type A consists of
the union of three intervals (— «, a), (b, ¢), and (d, ©), wherea < 1 < b <
¢ < d (except possibly for a set of measure zero). Furthermore, as « —0,a — —x,
d — «,and b and ¢ — 1. From this last remark it follows that there are critical
sizes « and o', @ > o/, so that the corresponding critical regions of type A4,
W and W, , are uniquely specified except for sets of measure zero, but a sub-
set of W, of positive measure is not in W, .

3. Proof.
Part 1. First we note that inequality (4) reduces to

(Ga) Qr—3/2)+ G +2—2Y2" >k + kG +z — 2%/2) forzin W.
This inequality in turn reduces to
(5b) 24 altz+e>0 for x in W,

where z = (x — 1)/2 and ¢; and ¢; are real numbers depending on &; and %. .
Hence, for 0 < a < 1, W is (except possibly for a set of measure zero) either
the union of two intervals (—w, a) and (b, «), where a < b, or the union of
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three intervals (—=, a), (b, ¢), and (d, ©), where ¢ < b < ¢ < d, depending

4 2
on the number of real roots of 2° + ¢i2° + 2 4+ ¢ = 0.
t

Let us define o(t) = @07 exp [=#/2), A0) = [ o@adz, BO =

[ we@) dr = o), €)= [ @) dr = —to®) + A®), and ¥©) =

(t — 2)e(t). Then we see that in the case where W is the union of two intervals,
equations (1) and (2) reduce to

(6) A®) — A(@) =1 — q

) Vo) = ¥(a),

and in the case of three intervals equations (1) and (2) reduce to
®) Ad) — Ae) + A() — A(@) =1 —

9) ¥(d) — ¢(c) + ¢(b) — ¢(a) = 0.

Since ¢(t) > 0 for ¢t > 2 and ¥(f) < O for ¢t < 2, the largest value of A(b) —
2
A(a) consistent with equation (7) is f o(t) dt < .98. Thus for « sufficiently

small, a region of type A must consist of the union of three intervals except
possibly for a set of measure zero.

Part 2. That @ — —» and d — « as a — 0 is obvious. Equation (9) prevents
b and ¢ from both being less than 1 — 4/2 (the minimizing value of y(¢)) or
from both exceeding 1 4+ /2 (the maximizing value of ¥(t)). Since the interval
(b, ¢) must then have some points in common with the interval (1 — v/2,1 + v/2)
it follows that b and ¢ are bounded as a — 0.

The roots of equation (5b) are a* = (a — 1)/2,b* = (b — 1)/2,¢* = (¢ — 1)/2,
and d* = (d — 1)/2. Since the coefficients of z* and z are zero and one, respec-
tively, we have (a* + d*) 4+ (b* + ¢*) = 0 and (a* + d*)b*c* + a*d*(b* + ¢*) =
—1. Setting a* + d* = —2L, we have a*d* = b** — 1/(2L). Since a*d* —
—w, L — 0-+. Then a* and d* are both of the order of magnitude of L. Let
b* = L — e. Then ¢* = L + ¢ and equation (8) gives us ¢ = O(e).? Applying
equation (9) and noting that for z = 0, x = 1 and ¢/(1) > 0, we see that € % 0,
and ¢ = Oly(a) — ¥(d)] = o(L). The two results L — 0+ and ¢ = o(L) imply
that for o small enough b and ¢ — 1 but b and ¢ exceed one. This is the desired
result.
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2 We write a = o(b) if a/b— 0 as « — 0 and a = O(b) if there is a constant k so that
lal < k |b] for & small enough.



