NOTE ON UNIFORMLY BEST UNBIASED ESTIMATES!
By R. C. Davis

Pasadena, California

1, Summary and introduction. Bhattacharyya [1] has considered recently the
following problem in statistical estimation. Let X; , Xz, --- , X, be n stochastic
variables distributed according to the probability law f(x1, @2, -+, Za; 6)
dzdzy - - - dz,, where 6 is the unknown parameter. Consider the class of all
functions T'(z1, 22, - - - , x,) of the stochastic variables such that the expectation
of each function in this class is equal to a preassigned function 7(6). Usually ()
admits of more than one unbiased estimate, and the problem posed by various
authors is to obtain a lower bound of the variances of all such estimates, this
lower bound to be independent of the estimates themselves but depending on
7(6) and the distribution function of the n stochastic variables. Under certain
regularity conditions Bhattacharyya obtained a lower bound of the above type
which is never lower than the one obtained earlier independently by Cramér [2]
and Rao [3], although the conditions assumed by Bhattacharyya are more
restrictive than those assumed by the latter authors. Recently E. W. Barankin
in a remarkable paper [4] has developed a procedure which yields the class of
lower bounds of unbiased estimates having minimum sth absolute central
moment (s > 1) at a preassigned parameter value 6, . In this note we are con-
cerned with the attainment of a lower bound obtained first by Bhattacharyya.
Bhattacharyya discusses the case in which his lower bound is attained and
derives some interesting properties of the distribution of such a statistic (which
might be called a generalized efficient statistic).

The purpose of this note is to prove that in the case in which the variables
X,, X,, -+, X, are independently and identically distributed with a common
distribution function F(z; 6) depending upon a single unknown parameter,
one obtains the following result: under the regularity conditions assumed by

Bhattacharyya in which the parameter § may assume values in an interval

of the real axis, and with an additional slight restriction on the cumulative
distribution function F(x; 6), no generalized efficient statistic exists which is
constructed by use of both the first and second derivatives of the likelihood
function with respect to the parameter. It follows that if an efficient estimate
(in the sense originally defined by Fisher [5]) for the single unknown parameter
does not exist, then no distribution F(x; 6) exists possessing a uniformly minimum
variance unbiased estimate of r(6) which is constructed by using a linear com-
bination of the first and second partial logarithmic derivatives of the likelihood
function. This result for the case involving a single unknown parameter is
peculiarly of interest in view of the fact that Seth [6] has given an example
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in which the above construction is possible if the distribution involves two
unknown parameters.

2. A theorem. Let X be a chance variable possessing an absolutely continuous
probability distribution F(z; 6) in which 6 is the single unknown parameter.
Denote by f(z; 6) the probability density function of X, this function existing
almost everywhere. Consider a finite sequence {X;},7 = 1, 2, ---, n, of inde-
pendently distributed chance variables possessing the common distribution
function F(z; 8). We restrict ourselves in this note to unbiased estimates of (6)
which are functions T,(x1, 2, - - - , Z,), where z; is a random observation of X; .
Denote also by L(z1, %3, - -+ , & ; 6) the likelihood function of X , Xz, - -+ , X,
so that in the case considered in this note

Ly, @2, -+, %n; 0) = flz1; 0)f(x2;6) -+ fl2a;0).
We denote by E, n-dimensional Euclidean space.

Following Bhattacharyya we make the following assumptions concerning
F(z; 0):

AssuMpTION A. X assumes values x in E, and the true parameter value 0 lies
wn an interval I C E; .

AssumprioN B. F(x; 0) is absolutely continuous in .

AssumprioN C. % , (;—2(;1—;1, %%]; exist almost everywhere in E, and for every 0¢l.

AssumpTioN D. %—IOJ and %—}2’ are linearly independent for almost all points
Ty, XTp, o, Tnin By

AssumprioN E. %i < Gimy, 2y -+, Ta), t = 1,2, for all 6 ¢ I, where
Gi(x1, T2, ++ , Ta) s tntegrable with respect to I over (— ©, o).

AssumprioN F. g—; and % exist for all 0¢l.

18°'L 14'L
L a6 L 96
In this note we make an additional assumption concerning the density function
F(x; 6).
AssumprioN H. There exists a closed inteval A (A C E)) such that, for 6 € I and

AssumpTioN G.J;; = E [ ] exists for each 1,7 (1 = 1,2;7 = 1,2).

z €A, f(x, ) > 0 and s continuous in x. Moreover, ?’—J;(x; 6) # 0.

If we denote by (J%) the matrix inverse to (J;), Bhattacharyya deduces
the following inequality for the variance, V(7T.), of any unbiased estimate
To(y, 2y -+, xn) of 7(6):

2 2

(1 V(T > 2 2 w0 J7,

i=1 j=1
where

S d'7(6)
dgr
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Equation (1) can become an equality if and only if the following equation

holds for almost all ;, a2, -+ , 2, in K, :

01 'L
2 Tw — 7 = 2, N} 7 ==
@ T Z: L a6’
where

0 J ot
A = ; 7 J7.

When equation (2) holds, it is clear that the statistic T, becomes a generaliza-
tion of Fisher’s efficient statistic. In view of the desirable property of minimizing
the variance among the class of unbiased estimates of 7(8), it is clearly worth
while to attempt to characterize the distributions for which equation (2) is valid.
We prove the following theorem:

TuaEOREM 1. In the abscnce of an efficient statistic for () there exists no cumulative
distribution function F(x; 6) satisfying Assumptions (A)—(H) which yields for
any sample size, n, a statistic Tn(xy, T2, -+, Tn) satisfying equation (2) for all
0 ¢ I and almost all (@1, @2, -+, x,) tn E,.

Proor. We prove the theorem by showing that equation (2) leads to an
impossibility if F(x; 6) satisfies Assumptions A-T. First we transform equation
(2) into a partial differential equation in lo L(x;, 22, -+, &,). To simplify the
presentation we give the proof for the case 7(8) = 6, but we lose no generality
in doing so. Equation (2) then assumes the form

E] 9 4 ]
"n - 0 == 0 —— 4 2 |—>—— 4 <—— 1) J
@ 7 TR E L+ l)

in which

Ja2 + 2(771 - l)jfl L
nlinge — flo + 2(n — Dghl’
g

I . S
? nlinje — Jtz + 2 — Djh)’

1] -11
Al == =

and

As stated already, equation (3) need not be valid for a set of points
(1, 22, -+, x,) having measure zero. Denote by A" the closed cube in E,
defined by @; € A, where A is the closed interval defined in Assumption H. It is
clear from Assumption H that there exist points in A for which equation (3) is
valid. We choose one such point (2, @2, -+, 2,) and consider this as a fixed
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point in A" for the subsequent analysis. For each 6 in the interval 7, we denote
by x(6) the value of x given by the transformation

(4) In f(z; 6) = %m LGy, 2, -, 2 0).

9

Since - 5 ln L and 6— In L exist almost everywhere in E, by Assumption C,

2

d 2
(w1, @2, -+, x,.) so that the above derivatives exist and also so that equation (3)
is valid. For each 6 ¢ I, the following equation is valid:

B T.—0=NaZ ln fz; 0) + A5 [n

% In f(x; ) + n' (% In f(x; 0))2].

Substituting the values of A{ and A2 in (5) and simplifying, we obtain the expres-
sion

it is clear that ln f(x(0); 60) and In f(x(0); 0) exist. We choose the fixed point

de?

(Jo2 — ’]11) — ln f@; 0) + i @ In f(z; 6)

de? \
2 d . (d

+n [2]11 7 In f(z; 6) + iz <0_l(} ln_j—'(xi 0)) ]

Jugee — fi2 — 25 + 25in '

It
|

(6) fZ"n -
To simplify matters we write this simply as

_a(z(0), 6) + nb(z(0), 6)
T TTc0) F nele)

Since this equation is valid for every 8 ¢ I, we can differentiate both sides of
the equation with respect to 6. We obtain a quadratic polynomial in », which
we write as

8) an® + fn + v = 0,
in which
2 d
dO( + 0)

o =
| (2L 0) 42
ﬂ—ce[36<6+c>+ce]’
_2d a
7"‘03?;[2“]-

The two roots of (8) are given by

=B £VE — day
2a ’

) To =

n =




444 R. C. DAVIS

Since by assumption at least one of these roots is a positive integer, we obtain
the relations

8 = — 2aN,,
VB2 — 4ay = 2aN;,

where N; and N, are integers. From these two relationships, we can deduce that
v = (Ni — N)a.

Referring to the definition of & and v and performing two quadratures, we
obtain the equations

1d Je [ d ¥
T z; 0 53 | 75 5 = 4ia =0
9) oo In f(z; 6) + 57 [do In f(z; 0)] T 0
J — 2ih :\ d ‘
— = | =1 ; 0
[Ju]zz — Ji — 254, 1 db n /(= 0)
(10) . 7
Ji2
A ; 3 | -=1 ;6 =T, — 6.
+ []u]zz - ]fz - 2]?1] dg? n f(z; 6) T

) d
The solution of the quadratic equation in a0 In f(z; 6) in (9) yields

(1) 2 1nfe; 0) = MO + VNG + QO — 4,

d
and the integration of the first order differential equation in 7 In f(z; 6) given

in (10) yields
(12) L 10 fo;0) = GOT. + HO + RO).

It is clear from inspection of equations (9) through (12) that the solutions to (9)
and (10) are identical if and only if j;; = 0. Since i, is proportional to A3 in (3), the
vanishing of ji, implies that the statistic Tn(2:, @2, - - - , 2,) Is formed only from
the first partial derivative of the likelihood function and hence is an efficient
statistic. This is contrary to the assumption of the theorem. The possibility that
each side of equations (9) and (10) vanish identically is ruled out by the part of
Assumption H in which it is stated that 3% In f(x; 0) = 0 for z ¢ A. Hence our
assumption that equation (2) holds leads to a contradiction of the assumptions
of the theorem. We conclude that there exists no cumulative probability distribu-
tion function (satisfying the assumptions of the theorem) which yields a gener-
alized efficient statistic for any sample size n.
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