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1. Summary. In 1943 Wald [2] gave a method for constructing tolerance
regions in the multivariate case. Tukey generalized Wald’s procedure in [4]
and the results were interpreted for discontinuous distributions in [5] and [6].

This paper presents a further generalization of the method so that statistically
equivalent blocks can be determined sequentially; the particular function used
to cut off a block may depend on the shape or structure of previously selected
blocks. The results are also interpreted for the case of discontinuous distribu-
tions.

Possible advantages of applying the method are discussed.

I. ConminvoUs CASE

2. Introduction. The general consideration of statistically equivalent blocks
has its origin in Wilks’ method [1] of forming tolerance regions by using order
statistics. For any interval formed from the order statistics, the proportion of the
population “covered’”, referred to as the ‘‘coverage”, was considered as the
value of a random variable. Wilks showed that the distribution of this “coverage”
was independent of the particular continuous population sampled; in fact, it has
a Beta distribution depending only on the sample size and the particular order
statistics chosen to form the interval.

The method was extended to multivariate populations by Wald and Tukey
[2], [4], the latter being responsible for the term *‘statistically equivalent block”’—
the multivariate analogue of the interval between two adjacent order statistics.
The coverages of these blocks, n + 1 of them for samples of n, have a very ele-
mentary distribution closely related to that of the n order statistics of a sample
from a uniform distribution [0, 1], and the coverage of any sum of blocks has a
marginal Beta distribution.

The method used in previous papers to form blocks is, essentially, to have
a fixed sequence of functions which are used successively to cut off blocks from
the space of the random variable being sampled. In this paper the fixed sequence
is replaced by one having the choice of function at any point in the sequence
depend on the observed values at the cuts of functions already used. More gen-
erally the choice of function can be made randomly from a class of functions
where both the probabilities and the class can depend on the functions already
used and on their observed values. All the previous results still hold but the
proof for the discontinuous case requires special treatment. A precise definition
of the blocks is given in Section 4 and the general theorem in Section 5.

Advantages of this generalization for the practitioner can be illustrated by
the following examples. Consider a sample of 25 from a continuous bivariate
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STATISTICALLY EQUIVALENT RLOCKS 373

distribution with the values plotted in Figure 1. Suppose a tolerance region is to
be formed by deleting 12 blocks and a further requirement is made that the
remaining region should be roughtly of a given shape, say square or octagonal.
Corresponding to the example in [4] we shall consider the latter.

The functions to be used to form the region will be the following:

Yy &y —Yy, =% &+ Y, T — Y, =T — Y, =T+ Y.

Using the function y a block is formed by the method of [4], that is, the sample
point yielding the largest value of y is selected and the first region consists of
all points in the two-dimensional space having a larger value of y. Similarly
form the second block using the function z: the method is the same as for the
first block except that we consider only the n — 1 points remaining after deleting
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the one determining the first block, and only that part of the plane after remov-
ing the first block. Form successively in this way blocks corresponding to the
eight functions.

At this point we deviate from the procedure of [4]. For further functions we
select from the given eight functional forms according to the values of the first
eight functions at their respective cuts. To obtain a roughly octagonal region
we shall make a ninth cut parallel to the shortest of the eight sides of the residual
region. However, some of these sides may have vanished completely, in which
case we take cuts parallel to the missing sides, commencing with the first when
ordered according to the number of the function which produced the cut. This
is carried out in the example in Figure 1 until twelve blocks altogether have been
removed. The region T remaining after removal of the twelve blocks will be used
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as the tolerance region whose minimum coverage with a given confidence level
can be calculated by the theorem in Section 5.

Consider a second example in which we use the sample of 25 plotted again in
Figure 2 but desire a circular tolerance region. The functions used are the follow-
ing:

Y, T, —Y, —I, (ZE - 0[)2 + (y - 6)2'
As before we remove four blocks using the first four functions, thus reducing the
residual region to a rectangle. All further functions used will be identical to the
fifth above where a, 8 are chosen to be the coordinates of the midpoint of the
rectangle. Remove eight more blocks and use the residual T as a tolerance region
with probabilities prescribed by the theorem in Section 5. Notice that tolerance
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regions so formed will be either circular or circular with two or four flat sides.

These simple procedures and many possible variations should permit the
practitioner to impose quite general but approximate requirements on the
shape of the final tolerance region.

3. Notation. Consider a probability distribution over a space 8 which could
be Euclidean of one or higher dimension, or more general. By this we mean
there exists a nonnegative additive set function over the space with measure
one for the whole space. Denote by w an arbitrary point in the space and let W,
called the chance quantity, symbolize the existence of the probability measure
defined above. The symbolic operations on a chance quantity are the obvious
operations with the probability measure. For example, corresponding to a real-
valued Borel funetion ¢(w) over the space 8, we can use the symbol (W) for
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a chance quantity whose probability measure is defined by P,w(S) =
Pw(o'(S)), where S is a Borel Set in R'.

The expression “coverage of a set” is to be interpreted as the probability
measure of the set. If the set is a chance quantity, then its coverage is a real-
valued chance quantity or random variable.

4. Definition of the blocks. Consider n points in the space S = {w} and a
family of functions ¢;(w), e2(w | @1), -+« , om(w | @1, -+, ©m-1), each of which
yields a random variable having a continuous distribution for all values of
@1, 02, -+, via except perhaps for a set having P-measure zero.

In the theorem that follows in the next section these n points will be considered
as a sample of n for the chance quantity W.

DerinNtTioN 4.1. The set wi, wy, -+, W and the functions ¢y, @2, -,
om (m < n) define blocks as follows:

Sy = {WI<P1(w) > 0‘1}’

where a; = max ¢1(w;) = e1(w;q), which defines an (1);

Se = {w|eaw) < a1, e(w]en) > en},
where o = max (w; | 1) = @2(Wice | 1) and 1(2) £ (1), which defines an i(2);
€4 (1)
wn general for 1 < k < m,

S = {w|low) <ar, -+, opa(w|on, -+, a)

< ak-—l,‘Pk(wlal; Tty ak—l) > ak}’

where a;, = max ap(w; | en, -+, 1) = @e(Wigy |, *++ , 1), the mazimum
[

being taken over all © except 1(1), 1(2), - -+ , ?(k — 1) and.i(k) being chosen from
the set over which the mazximum is taken.
If m < n, then

Smintr = {w]o1(w) <o, om0, -+, ama) < am}.
The functions have thus defined n + 1 blocks if there are n functions, and if

fewer functions, then m blocks and an associated region Sj.41. The definition
of the blocks is unique unless ¢;(w;) = ¢:;(w:) for some 1, 7, k.

6. General results. Continuous case.

TuHEOREM 5.1. If oi(W | @i, -+, 0i1) has a continuous distribution for all
values of @1, + -+ , i (except perhaps for a set of P-measure zero) and for all 1,
and if for a sample of n, (Wi, --- , W), from the distribution of W we define
blocks Si, + -+, Smins1 according to Definition 4.1, then

(i) the blocks are disjoint chance sets uniquely defined with probability one, and

(ii) the distribution of the coverages

ci = P(8y),
Cojnyl = P(Smln+l)
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isthesameasthatofty , ta, - -« , tm and Z?:,,ILH ti , where t; are uniformly distributed
on the barycentric simplex with n + 1 vertices."

(1) and (ii) could be replaced by the statement

(i) Si, -+, Sminsq1 are a partial family of statistically equivalent blocks of
type n + 1 and an associated m | n + 1 tdlerance region.

Proor. The proof using Wald’s principle and induction on m follows closely
that given in Section 8 of [4].

II. DisconTiNUOUS CASE

6. Introduction. Scheffé and Tukey [3] considered tolerance regions for dis-
continuous one dimensional distributions—previous results sxtended with in-
equalities replacing the equalities.

The multivariate discontinuous case was considered by Tukey [5]. As well
as blocks, cuts must now be considered and this complicates the formation of
tolerance regions. Some remarks on the main theorem in [5] are contained in [6].

The results of [5] and [6] carry over to the case where the functions used to
form the blocks are decided upon “sequentially.” The proof, although similar,
requires special treatment and some new devices.

It is perhaps worth remarking that although the functions in [5] reduce all
cuts to points, this is not necessary. A cut could be a line with perhaps two or
more points on it. Select one by a chance procedure (each with the same probabil-
ity) to represent the cut. The remaining points are then available to fix the
cuts for other blocks.

7. Definition of the cuts and blocks. The formation of the m-system of funec-
tions needs to be altered slightly to take care of the new procedure admitting
a choice of function at any stage.

As in [5] we order finite sequences (a1, -, @m), (b1, -+, bn) by means of
the following rule. (a;, -+ -, an) > (by, -+, bn) if any of the following hold:

a; > b1 y
a =0b and a; > by,
ag = b{ (1: < m) &nd Am > bm .

We define < similarly, and = means identity.
DEFinNITION 7.1. An m-system of functions &, « -+ , &, is defined as follows:

B(w) = {ora(w|®1, -, Becr), 0y GrpwW | B, -, Br),

where @, «(w | Py, -+, x_1) is a real-valued Borel function of w in the space $
and 1s also dependent on @y, - - - , &y, where these are points in the Euclidean
spaces R*™, R™® ... R**™ and where p(k) is a positive integer depending
on k. :

1 8ee Tukey [4].
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We can order values of a function &, by the lexicographical method, described
above, for ordering sequences.

DEFINITION 7.2. Given an m-system of functions and n points wi, -+ , W, in
8 (m < m), the corresponding blocks and cuts arc defined by the following procedure:
Select 1(1) to maximize ®;(w;). If more than one value of © maximizes ®, , choose
one at random (each taken to be equally likely). Let a; be this maximum value of
<I>1(wi).

S = {w|®1(w) > Bi(wiw)},
Ti = {w]|®(w) = &(wiw)}-

Next, ©(2) is selected 5£i(1) to maximize ®x(w; | 1), using the chance procedure
as for (1) in case of ties. Let the maximum value be o .

Se = {w|®1(w) < a1, P2(w| s) > Bo(wie) | )},
To = {w|®(w) < a1, P(w]| o) = B(wiegy | )},
Sutntr = {w|P(w |, -+, 1) <ar; b =1,---,m}.

Also define 81, Sz, -+, Sminta by the expressions above for Si, Sz, -+, Smins1,
where < 1s replaced by < and > 1is replaced by >.

We denote by \ a subset of the indices 1,2, --- , m, m|n + 1.

DErINITION 7.3. The block group By consists of the union of all S; with 7 in N
and all T; not continaed in S; with ¢ not in \. The closed block group B\ consists of
the union of all S; with 7 in \ and all T'; contained in any S; with ¢ in \.

The above definition covers all cases where the functions are sufficient to
reduce all cuts to points. However, if such is not the case we need the more
general definition:

DEFINITION 7.4. The closed block group By consists of the union of all S; with
¢ in N. The block group B\ consists of the complement of Beoy where C(\) is the
complement of N with respect to the indices 1, 2,---, m, m|n + 1.

The definition of block groups is unique for a given set of points if all cuts
are points; otherwise the chance procedure determines the block groups for a
given set of points.

DEerINITION 7.5. As in [5] we let ¢(N), €(\) stand for the coverages of the block
groups By, By

8. General results. Discontinuous case.

TureoreM 8.1. Let &, &, -+, ®, be any m-system of functions (Definition
7.0, Wi, -+, W, be a sample of n from an arbitrary distribution designated by
W(m < n), and let the blocks, cuts, block groups, and coverages be formed according
to Definitions 7.2, 7.3, and 7.4. Then if v1, 2, -+ , ¥vp are any set of disjoint N’s,

Priclyy) < @y, -+ 58(v) > Ty oo, E(yp) > 2p)
> Pril(v) < 1y ... i t(ve) > 2, ..., (7)) > 25,
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wherety = Zi Extiy tmpny = Sty sand by, by, -+, bosa have a uniform distri-
bution on the barycentric simplex:® In particular we have

Pric() <z} > L(s,n 4+ 1 — 5) > Pr{ec(r) < z},

where s 1s the number of indices tn A (m = n) and I,(s,n + 1 — s) is the incomplete
Beta function.

9. The functions . In a manner similar to that of Section 6 in [5], we replace
the m-system of functions by real functions y.

LemMma 9.1. Given an m-system of functions &y, - -+ , ., , there exist real func-
tions Ya(w), Ya(w | Y1), -+, ¥m(w | Y1, *+* , Ym-1) such that of Wy, -+ -, W, form
a sample of n from W, then

@) s(w | ¢r, -+, ¥iu1) ts defined except for values of ¥1, - -+ , Yiu1 having P-
measure zero;

(ii) Pr{®:.(W;) has a different relation (<, =, or >) to ®;(Wy) than that of
ViW;) to Y:(Wi) | @1, - -+, i} = 0.

The functions y; depend on the underlying distribution as seen from their
definition below, but are only used as tools in proving the general theorem.

To prove Lemma 9.1 we need the following lemma:

Lemma 9.2. Let ®(w) be a finite sequence of real functions ordered lexicographi-
cally (Definition 7.1) and let W be a chance quantity. Define

Y(w) = Prid(W) < d(w)}.

(1) For each value of ¥(w) we are able to associate at most one value of ®(w) with
unassociated values of P-measure zero.

Gi) If Wy, « -+, W, is a sample of the chance quantity W, then with probability
one the relation (<, =, or >) between ®(W ;) and ®(W.) ts the same as that between
v(W;) and y(Ws).

Proor or (i). Considering the function ®(w), we ask when could two values
of it, say &', ®", correspond to a single value of ¥(w)? Since the values of ®(w)
are ordered, this would mean

Prid’ < d(w) < 3"} =0,

and also any ® between @ and " would have the same value of . These points
would form an interval for ¢, , or, if not, for ¢, , etc., and the P-measure for the
interval is zero. To the corresponding value of ¢ we associate the ®(w) which is
the upper limit point of the interval. Since there can be at most a countable
number of disjoint intervals on the finite number of real lines and each with
P-measure zero, then the P-measure is zero for the values of ®(w) which are not
associated with values of ¥(w).

The proof of (ii) is given on p. 36 of [5].

The proof of Lemma 9.1 follows easily by using Lemma 9.2. The first part
of Lemma 9.2 shows that the definition of ¢;(w) for values of ¢, -+, ¥iq1 is

2 See Tukey [4].
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unique except for values of ¢y, -+ -, ¥;; which have P-measure zero. This es-
tablishes the first part of Lemma 9.1. The second part follows directly from
Lemma 9.2.

10. The representation theorem. In the proof of the general theorem we can
no longer consider the joint distribution of {¢:;(W)} as in [5]. The new proof
does not need the general representation theorem of Section 8 in [5] but only
the one-dimensional representation theorem in [3].

11. Proof of the general theorem. According to Lemma 9.1, the indices
1(1), + -+, 1(m) used to determine the blocks are with probability one the same
whether we use the ¢; or ®;. Also, if we consider the blocks themselves, for
example

S: = {w | @1(w) > P1(wiem)},
81 = {w| i) > h(wiw)},

Lemma 9.1 shows that these differ by a set of P-measure zero and hence have
identical coverages. Similarly for the other blocks. Hence it is sufficient to prove
our theorem using the real functions ¥, -+, ¥Ym.

As in [5] we set up a continuous distribution which can produce by a mapping
a distribution equivalent to that of the y;. It happens that for this continuous
distribution the functions used to form blocks can be preassigned.

Corresponding to ¥ (W) we define a function g;(U;) of a uniform variate such
that the distributions are identical (See [3]). As in Lemma 9.2 there is at most
one value of ¥;(W) for each value of U; (if we neglect appropriate points of
P-measure zero) and at-least one value of U, for each value of ¢;(W). Thus a
function depending on the value of ¥4(W) can just as well be determined by the
value of U, . )

For ¢»(W | ¢1) consider its conditional distribution for values of W restricted
as follows: Y1(w) < gi(u1) or Y1(w) = gi(w1) with the probability measure of
Y1 (g1(w1)) reduced by the factor a, where '

- uy — inf g7 '(ga(u))
sup g1 (g1(w)) — inf g7 (ga(ur)

Define the function go(Uz|u1) of the uniformly distributed random variable
U. such that its distribution is identical to the above described distribution of
va(w | g1(w1)).

Similarly further functions gs(Us | u; , us), - - - of uniformly distributed random
variables Uy, - - - can be defined.

From the above construction of the mapping of u; , uz, - -+ , un it is obvious
that the mapping of a sample of # from the uniform distribution on the product
space [0, 1]™ yields n values of variates to be associated with the ¢y, ¢2, - -,
¥m . The distribution of the largest value of U, is the distribution of ¥;(wiw),
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and similarly for the others. The mapping has reproduced the part of the dis-
tribution of the 1, -+, ¥ in which we are interested. Also we note that the
largest value of U, yields the largest value of ¢,(Uy), ete.

Apply our previous theorem to a sample of n from the uniform distribution

on the product space [0, 1]™ with functions w;, us, - -, %, and consider the
following sets:
St = {(Us, -, Un) | U1 > w(i(1))},
8o = (U, -+, Un) | Ur < wGD), Uz > wG@)},
Snintr = {(Ur, -+, Un) | Ur < wm@GQ)), -+, Un < un(i(m))}.
Also define:
St = {aU, -, gaUn | Ur, -, Unca) | u(U) > @G},
Sx = {gi(Uy), - |
71(U1) < g1(wa(i(1))), g2(Us) > ga(ua(4(2)))},
Sings = [Gr(U1), <o ovveeeni i, | (UL) < gi(ua(i(1))), -~ - }.
SY, 87, - are defined as S, Sy, --- except < is replaced by < and >
by >.

Consider now the inverse mapping of the sets Sy, S5, --- and 87, 85, ---
into the space of (u1, Uz, - -+ , Un). We shall have

g (S?) € 8; c g8,
because
gi(us) > gi(a) = u; > a = gi(us) > gi(a).

Thus we have the following inequality for the corresponding coverages:
cov S¥ < cov S: < cov SF.

The theorem follows directly from these relations and the theorem for the
continuous case.

12. Selection of the cutting function &; by a random process. As indicated in
the third paragraph of the introduction, the general Theorem 8.1 still remains
valid if the functions are chosen by a random process from a class of such func-
tions. The particular class from which ®; is chosen may depend on the functions
previously selected (®; with j < 7) and on their values at the respective cuts.
The point is that Theorem 8.1 is true for any sequence &, , --- , ®,, and con-
sequently is true when the sequence is chosen by a random process.
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