ON CERTAIN METHODS OF ESTIMATING THE LINEAR
STRUCTURAL RELATION!

By J. NEymAN aND KErizaBerH L. Scorr
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1. Introduction and summary. The first part of this paper considers two
methods of estimating the linear structural relation between ‘two variables
both of which are subject to “error’; the second part of the paper comments
on a recently advanced procedure for constructing the confidence region for the
slope of the structural relation.

In 1940 Wald [1] initiated a certain procedure for estimating the linear struc-
tural relation between two variables both of which are subject to ‘“error.”
Wald’s idea was extended by Nair and Banerjee [2] and later by Bartlett [3].
These procedures require some knowledge about the values of certain non-
observable variables. When this knowledge is not available there is a temptation
to substitute information derived from observations. One such method was
considered by Wald who found sufficient conditions for the consistency of the
resulting estimate. The purpose of the first part of the present paper is to find
the necessary and sufficient conditions for two procedures with reference to a
slightly more general case, namely, when the “errors” in the two observable
variables may be correlated. The results obtained indicate that the two pro-
cedures, applied in the case of no additional knowledge about the values of the
non-observable variables, will lead to consistent estimates of the slope of the
structural relation in very exceptional cases only.

In 1949 Hemelrijk [4] described a novel procedure for constructing the con-
fidence region of the slope of the linear structural relation in the case when the
non-observable variables have unknown fixed values and the observations are
made with “error” which has the same probability distribution at each point.
The present paper considers this same procedure when there is no information
about the fixed non-observable variables and also when these variables are ran-
dom variables, and shows that the probability that the confidence region covers
the true slope is the same as before but that the probability of covering any
other slope is now the same as this probability of covering the true slope.

2. Statement of the first problem. Let £, u, and v denote random variables
with E(¢) finite and with E(u) = E(v) = 0, and let £ be independent of the pair
u, v. In Method 2 below, assume also that £ u, and v have finite variances.

The three variables £, u, and v are assumed to be nonobservable. However, it
is possible to observe the random variables « and y defined by

1 Prepared with the partial support of the Office of Naval Rescarch, and presented at the
Chicago meeting of the Institute of Mathematical Statistics, December 29, 1950.
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x =%+,
y=a+ﬂ£+v’

where a and 8 are unknown constants. The relation = « + B¢ is called the
linear structural relation between the random variables # and y. The variables
w and v are called the components of error although only part or, even, none of
them need represent ‘“‘error’” in the strict interpretation.

We consider that n pairs of observations, say ;, y;, forz = 1, 2, --- | n,
will be made on 2 and . It will be assumed that the triplet (¢;, u;, v;) corre-
sponding to the sth pair of observations is completely independent of all other
such triplets. This will imply the independence of the pairs (x;, y:) and (x;, y;),
1 £ j. For the first part of the paper (Sections 2-5) we consider that after
the observations are obtained, they will be renumbered according to the mag-
nitude of x so that x; £ x4y forz = 1,2, --- ; n — 1. However, this renum-
bering will not be assumed in Section 6.

Two different procedures for estimating 8 are considered.

MeTHOD 1. Fix two numbers ¢ < b such that P{z < a} > 0 and P{z > b} >
0. Let Z, , W, denote the arithmetic mean of the x’s and y,’s, respectively, for
those pairs of observations for which z; = a, and Z, , W, for those pairs for which
x; > b. As an estimate of 3, consider, say, by = (W, — W1)/(Z: — Z1).

MeTrrOD 2. Fix two proportions, p; > 0 and p. > 0, such that p; + p. = 1
and then let » = [np;] and s = [np.]. Denote by Z; , W; the arithmetic mean of
the s and y.’s, respectively, for which ¢ = 1, 2, --- , r; and by Z,, W, the
corresponding mean for ¢ = n — s + 1, n — s + 2, --- , n. The estimate of
B is then, say, bs = (Wy — W3)/(Z: — Zs).

Both of these methods are tempting in practical applications involving the
estimation of the linear structural relation between two variables both of which
are observed with “error”. The purpose of the first part of the present paper is
to investigate the necessary and sufficient conditions for the consistency of the
estimate of 8 in these two procedures.

¢

3. Necessary and sufficient conditions for the consistency of the estimate b;.
We wish to compute the stochastic limit of the estimate b; . In order to do this,
we shall use a slight generalization of the well known theorem of Khintchine
(see page 253 in [5]). The proof used for this lemma follows directly from an
unpublished result of Robert F. Tate.

TrrorEM 1. (GENERALIZED THEOREM OoF KminTcHINE.) If {X;} is an infinite
sequence of random variables, all independent and having the same distribution with
E(X;) = E; further, if {v,} is an infinite sequence of integer-valued and positive
random variables tending in probability to infinity (that is, such that, for any M,
lim,e P{v, < M} = 0), then asn — « the arithmetic mean of a random number
v, of variables X, , Xo, -+, X,, converges in probability to E,
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limp+ > X: = &

n—0 Vg i=1

Each of the two terms in the numerator of b, is 2 mean of a random number,
say v, , of random variables all having the same distribution function with finite
expected value. The same remark applies to the denominator of b; . As n — o,
the variable v, tends in probability to infinity. It follows that, at the same time,
each of the four means converges in probability to its expectation. Now, using
the theorem of Slutsky (see page 255 in [5]), we see that the stochastic limit of
b is equal to E(W, — W.)/E(Z, — Z,), provided this is finite. Thus, in the fol-
lowing we shall be concerned with the conditions under which E(W, — W;) =
BE(Z, — Z,).

We consider first the expected values,

E(Z) = Ew|e < a) = B+ u| ¢+ u < ),
E(Z) =E@x|z>b) =EE+u|&+u>0b).
In expression (1), we may set a = 0 without loss of generality since we consider
only differences, W, — W, etc. We then have
EW) =Ey|s<a)=pEE|t+usa)+BEo|t+usa)

and similarly
E(W;) =BE¢|§+u>b)+E@|t+u>b).
Thus,
EW, — W)
= BE(Zs — Z) — E@u — v | £+ u>b) + E@u —v|§ +u S a).

Let f(u) denote the expected value of v given w fixed. Then the expectation of
v may be rewritten in terms of f(w). Thus, for example,

E@w'leé+ u > b) = E{E|( + w > b), ul} = E[f(w) | £+ u > b].

Now

@

EW, — W) = BE(Z: — Zy)
— EBu — fu) | £+ u > b] + ElBu — f(u) | £ + v < al.

It is seen that the necessary and sufficient condition that b; be a consistent esti-
mate of 8 is that, say,

(4 I=EPBu—fwl|t+w=a — LBu—flwl[t+u>b =0

®3)

Since the value of 8 is unknown, it is of interest to ask for conditions which
will preserve the consistency of the estimate of 8 no matter what the value of
B, —» < B < =, may be. Let I, be the value of I when 8 = 3 and [; be the
value of I when 8 = By + 1. Subtracting I, from I; , we find that, say,
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(5) J=Eu|t+u=<a)—Eu|t+u>0b =0

is a necessary condition for the consistency of the estimate b; irrespective of
the value of 8. We shall see that J = 0 is also a sufficient condition.

Let ®(¢), G(u), and H(v) denote the distribution function of &, u, and v, re-
spectively, and let F(z) denote the resulting distribution function of . Now we
may write

Buli+us o) =PI [[ vde@ 6w

ttuse

“+0
= [F@)]™ f wb(a — u) dG(w)

00

~+o0
= F@I* [ ulata — w) — 2(@)] dGw),

=00

since E(u) = 0. Similarly,
+o0
Bult+u>0b) = [l — FO)™ f_ ufe(b) — ab — u)] dG(w).

Thus, in expression (5),
_ +°°, dla — u) — dla) , b — w) — d()
J - [w (1 [' T '"'ﬁ(—(i)mwm T + "VW"l' :_FZI;)‘*MN] dG(u)‘

It is easy to see that, unless both terms in the expression in square brackets are
zero, the integrand is always negative. Thus, the necessary and sufficient con-

ditions for J = 0 are

®(a — u) — ®(a) = 0,
(6)

&b —u) — @) =0

for all values of u except for a set of probability zero.
Let (u, v) denote the shortest interval such that P{u < v < v} = 1. We know
that o £ 0 < vsince F(u) = 0. Then conditions (6) imply

®(a — ») = ®la — w),

7
@) b — ») = db — u);
or
| Pla—v<isa—ul =0,
(8)
Pb—yv<E2b —pu) =0.

Equations (8) are the necessary and sufficient conditions for J = 0 and, there-
fore, the necessary conditions for the consistency of the estimate b, . We shall
now prove that they are also sufficient. In order to do so, we consider

BJ — I =Elfu)| &+ u = al — Ef(w) | £+ u >b]
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and show that when conditions (8) are satisfied then 83J — I = 0. Under con-
ditions (8) we have

BJ — I =E[f(u)|t.=a— ] — Elfw)|&>b— u,

and, since the pair of random variables u, v is independent of the random vari-
able £ and since E(v) = 0, we have 8J — I = 0. Hence the conditions (8) are the
necessary and sufficient conditions for I = 0 irrespective of the value of 8.
We now have proved the following theorem:

THEOREM 2. In order that b, preserve the property of being a consistent estimate
of B irrespective of the value of B, — = < 8 < o, it is necessary and sufficient
thatPla —v<tS<a—ul=Pb—v<EZ<b—yu} =0.

4. Necessary and sufficient conditions for the consistency of the estimate b;.
We now compute the stochastic limit of the estimate b, . Since each average in the
expression for b, is taken over dependent observations, the theorem of Khint-
chine is not directly applicable. We shall evaluate the expectation and variance
of each average, shall show that each variance tends to zero and thus that each
average converges in probability to its expected value.

Letting x; denote the jth of the observed z;s,7 = 1, 2, --- , n, numbered,
as above, in order of magnitude, we have

+o0
© B@) = 20 [ oF@P 0~ FOI aF ).
Then

o [T alF@I 1 - PP ap)

E(Z) = _s’f

j=n—s+1

(10)

n +o
;f tlpe (n — s,5) dF (x),

where Iriy(n — s, s) is the incomplete Beta function,

F(z)
f tn-—s—l (1 - t)s—l dt
0

Ipy (n — s,8) =

1
f A (R M
0

Let Xy, denote the (1 — p.)-percentile point of the distribution of z. As is
well known, when n — © with s = [np.] where p; is fixed, then Iz (n — s, s)
tends to zero for all z < X;_,, and to unity elsewhere. Thus

+o0
(11) lim E(Z) = - f 2 dF(@) = B |z > Xu,,).
n—00 p2 X]._p2

We now need to show that o7, — 0 as n — © with s = [np,] where p» is fixed.
Consider

n n—1 n
(12) SZi= > D42 X > mz.

j=n—s+1 i=mn—a+1 j=itl
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Repeating the reasoning leading to (10), we find
n +oo
E( > '03) = nf 2’ Irwy(n — s, s) dF(2).

j=n—s+1

Further, for 7 > 4,

o0
E(xiz;) = n(n — 1)CL5 CL754 f a[F (x)]"

. f ) 2lF(Z) — F@)' 1 — FGR)|™ dF(2) dF ().
Thus,

2 :v::l Enl E(z:x;)

i=n—s+1 j=1i+1

+0 0 n—1 . X X
— on(n — 1) f_ . f : Y CTVF@IT — F@] T dF Q) dF ()

i=n—s+1
oo ©
= 2n(n — 1) f 2lpn — s, 8 — 1) f 2 dF(2) dF (x).

Substituting into (12), we have

2 n [t 2 .
EZy) = 8—2[ T Irm(n — s, 8) df(x)

(13) - w
+ 2%_(2_&—2_-‘1*) [w lemln —s, s — 1) fz z dF (2) dF (v).

Letting n — « with s = [np,] where p, is fixed, we obtain
2 o0
lim E(Zi) =

n—0 ;g X1—py
1 2] 00
= = r 4
. ‘[x — /xl~p2 2 dF (2) dF (x)
lim EZ)

n—>00

x /m 2 dF(z) dF (x)

Therefore,

lim 02z., = (),
and it follows that as n is increased Z; converges in probability to E(z |z >
Xip,). Similarly, it can be shown that Z; converges in probability to
Ex|lz = Xp).
We now want to compute E(W,). Let y; be the observation accompanying
zj, the jth of the 2’s in order of magnitude. Then

E(y;) = EIE (y;] 2],
and we have
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‘*—Q . . .
E(y,) = [ E(y|2) nCi[F@)V ™1 — F@)]™7 dF (),

so that
o0

Bov) =2 [ By iﬂ CI F@P [ — F@)]™ dF @)

— 00 j=n—3s
n [
= §f E(y | x) Irm(n — s, 8) dF (z).

Owing to the property of Irw(n — s, s) already mentioned, we thus have that,
asn — o with s = [np,] where p; is fixed,

lim BOV) = = [ Bly|2) dF@) = By |z > Xip).
n—® P2 JX1—p,

Combining the reasoning above with that used to obtain K(Z3), it is easy to
show that

lim ¢}, = 0.

n—+00
It follows that, as » is increased, W converges in probability to E(y | v > X1,,).
In a similar way, we can show that W; converges in probability to E(y |z <
X))

Now, noticing that the stochastic limits of W3, Wy, Z;, and Z4 are identical
with the expectations of W, , W, Z,, and Z;, respectively, we can use the re-
sults obtained in Section 3 to establish Theorem 3.

Let r = [npi], s = [np.] and let £,, and £.,, be the corresponding percentile
points of £, that is, such that P{¢ < &,,} = prand P{& > £,,] = p2.

THEOREM 3. If n — <« while p; and p. are held constant, the necessary and suf-
ficient condition that by preserve the property of being a consistent estimate of B
irrespective of the value of 8, — » < 8 < o, is that

P{£P1”V<£§£m—l"}=P{£l—pz'—”<£§{"l—pz—”“}=O'

6. Remarks. A. Wald [1] considered estimates similar to b, for the case u and
v uncorrelated, with p; = p, = %, and showed that the conditions in Theorem 3
are sufficient conditions.

It is interesting that b; and b, may be consistent estimates of 8 for some values
of this parameter even though the conditions of the theorcms are not satisfied.
To see this, we return to formula (4). If % and v are dependent random variables
and if the regression of v on w is represented by the equation f(u) = B*u, then
b, and b, are consistent estimates whenever 8 = B*. On the other hand, if u
and v are independent, then the terms in (4) involving f(u) drop out because
E(v) = 0, and we find that whenever 8 5 0 the necessary and sufficient conditions
for the consistency of the estimates b; and b, are just the conditions in Theorems
2 and 3, respectively. However, if 8 = 0 then b; and b. ave certainly consistent
estimates of 8.
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The results obtained suggest that the two procedures discussed will lead to
consistent estimates of 8 in very exceptional cases only.

6. On Hemelrijk’s confidence region for 3. Hemelrijk [4] considers the follow-
ing construction of a confidence region, say B, for the slopc 8 of the linear strue-
tural relation. Let (2, »,) and (s, y,) be two different points chosen from the
n observable points in any manner which is completely independent of the
ui,viford = 1,2, -+ n. Consider the set B of values of the slope of two parallel
straight lines, one thlough (%, , y,) and the other through (., v.), such that
inside of the closed strip bounded by these two lines there are less than n — m
observed points. Hemelrijk shows, under the conditions stated at the beginning
of Section 2, with the additional assumptions that (a) whatever the fixed num-
bers 8 and p, the probability is zero that the errors w and » will satisfy the re-
lation % cos 8 + v sin 0 = p and (b) the &, fori = 1,2, -+, n, are unknown
fixed numbers, that the probability that the set B includes 8 is given by

_(m 4+ D(m + 2)
nn — 1)

It should be emphasized that unless some additional information, not as-
sumed here, is available about the unobservable variables then, in order to
fulfill the condition that the choice of the two points used to construct B be
made in a manner which is completely independent of the (u;, v;) for 7 = 1,
2, - -+, n, this choice ordinarily will be made at random out of the n observed
points. Also in many practical situations it does not seem appropriate to con-
sider the values of ¢ as fixed constants. Rather, they are treated as independent
samples of a random variable.

We now show that in either of these two cases, (i) when the values of ¢ are
fixed constants but the choice of the observed points to be designated r and s
is made in a random manner, and (ii) when £ is a random variable, the prob-
ability that the set B includes any fixed slope, say v, is exactly the same as the
probability that B includes the true slope 8, as given by (15). The theorem is
stated for the sccond case but the proof is identical in the two cases and is the
same as that used by Hemelrijk to prove (15).

Tueorem 4. Whatever the fized number v (whether coinciding with the slope
B of the structural relation or not) under the conditions given at the beginning of
Section 2 plus the condition (a) above, the probability that the set B includes v s

(16) Plyesy =1 - MEDOED o< gn -3

(15) P{gc e B} =1 for0 =m < n — 3.

Proor. The set B includes v if and only if the parallel lines of slope y through
the two points (v,, ¥,) and (s, ys) determine a closed strip which contains
fewer than n — m points (2, 7). Let z; denote the distance, in an arbitrary fixed
direction different from v, from (z;, y:) to any fixed line I of slopey. v ¢ B if
and only if fewer than n — m of the 2, 2y, -+, 2, lic in the closed interval
[z, z]. Under the assumptions made, 2, 2, -+ -, 2, are independent obser-
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vations of the same random variable z (under the conditions of Hemelrijk, this
is true only when v coincides with 8), with probability one that the z;’s are all
different. Thus, the probability that 2, is the jth smallest of the 2;’s is the same
1/n for every j. The same is true forz, . The z/s may be arranged inn! ways. The
number of arrangements for which fewer than n — m of the z/s lie in the closed
interval [z,, 2] is n! — 2[(m 4+ D(n — 2)! + m(n — 2)! + -+ +(n — 2)]]
so that the desired probability is

P{7£B}=1~—(m+l)(m+2) with0 £ m = n — 3.
nn — 1)

The theorem just proved implies that, under the conditions stated, the power
of the test of the hypothesis that 8 = 8y, say, provided by the set B, is a con-
stant equal to the probability of an error of the first kind.

The authors wish to emphasize that it is not their intention to criticize the
elegant construction of Hemelrijk, which is perfectly correct in relation to the
hypotheses he makes. The point under discussion is that, just as in the case of
the result of Wald, one may feel tempted to apply Hemelrijk’s procedure some-
what beyond the limits indicated. The results obtained here show that such ex-
tensions are not profitable. Since the distinction between the conditions as-
sumed by Hemelrijk and those at the outset of this paper is somewhat delicate,
some illustrations may be interesting.

(i) Consider that N astronomers propose to study the slope 8 of the structural
relation between two characteristics, £ and 7 = « + B¢, of the stars. Each as-
tronomer will observe, independently from the others, the same n stars and will
use his set of n pairs of observations, {x;,y:},7 = 1,2, --+, n, to construct the
confidence set B for the slope 8. Furthermore, for the construction of B each will
designate the observations from the same two stars chosen from the » stars in
advance, say Castor and Pollux, as (z,, y-) and (z., ys), respectively, and will
use the same value for m. We have here the conditions assumed by Hemelrijk.
Expression (15) holds but not necessarily expression (16) for v 8. Thus, the
expected proportion of the N sets B which include the true slope B is
1 — (m + 1)(m + 2)[n(n — 1)]7, but this is not true, in general, for any other
slope v #% B.

(ii) Consider a situation similar to that described in (i) except that each of
the N astronomers chooses for himself, and in a random manner, the particular
two stars, out of the n stars, to be designated as the rth and the sth in the
construction of his set B. Now, whatever the number v, whether coinciding with
the true slope 8 or not, the expected proportion of the sets B which include v
is the same number, given by (16).

The same conclusion holds if this situation (ii) is altered by having each
astronomer choose for himself the particular n stars that he will observe. How-
ever, if we consider the subset of the N astronomers, each choosing for himself
the n stars that he will observe, who use the same two stars, say Castor and
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Pollux, to construct the set B, then (16) does not necessarily hold for v = 8;
we have the same conclusion as with situation (i).

(iii) The situations above may be considered somewhat unrealistic. Pre-
sumably, the N astronomers would not each construct his own confidence set B
for the same slope 8. Rather, their observations would be combined and then
one set B constructed from the combined observations. We may, however,
consider the cases in general human experience in which, each for its own prob-
lem, a set B will be constructed. The expected proportion of these sets B which
include any number v is exactly the same as the expected proportion which
include the true slope, as given by Theorem 4.
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