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N = N;N:. On the other hand, the second component is taken direct'yfrom
the array B = (by).

Now select any ¢ rows from the array so constructed. Any ¢-plet of the b ele-
ments is repeated N, times in each of A, groups. Within each of these groups of
N1 objects any particular ¢{-plet of the a elements occurs A, times so that each
t-plet which is constructed from the compound elements occurs A;\. times. Thus
the new array is orthogonal.

We now adjoin the array (N;, ks, s3, t), where £ = min (k,, k2, k3), to the one
we have just constructed, by an analogous process. Continuing in this manner,
we reach our theorem. In particularif ¢t = 2, and \; = 1fori =1,2,---, u,
we secure the MacNeish theorem (cf. [1]).

As an example of the use of our theorem, we can state as an illustrative result

f(72,6,2) z 4

since f(3°,3,2) = 4, f(2°, 2, 2) = 7 in accordance with results established in [4].
In the absence of this extension of the MacNeish result, it might have been
supposed that there could be but three orthogonal rows for this case, since there
are no orthogonal Latin squares of side 6. We cannot, however, conclude that
the equality sign holds since counter examples have been given in [4].
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ON A LIMITING CASE FOR THE DISTRIBUTION OF EXCEEDANCES,
WITH AN APPLICATION TO LIFE-TESTING

By Lee B. Harris
General Electric Company

According to equation (4.12) of [1], the probability that in a future sample of
N observations, taken from an unknown distribution of a continuous variate,
less than z of them will exceed x,, , the mth highest observation in the trial sample
of n observations, is given by

(:3)
W(n,m,N,z) =1 — et

L L Fuz+1,—n—n—N+z+11),
N +n
)
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296 LEE B. HARRIS

where F ., is the sum of the first m terms of the hypergeometric series, having the
parameters indicated in the parentheses. If we set m = 1, we find that the prob-
ability of getting in a future sample of N trials at most z exceedances of the largest
value in a trial sample of n observations is

(1 Wn, 1,N,z) =1 — [(xﬁ 1)/(2’1’ f)],

since F; = 1.
If z and N are both large, we can approximate the factorials in (1) with Stirl-
ing’s formula, a! & \/2ra(a/e)’. Then (1) reduces to

1 - W(n,l,N,:c)z(l——x;1>

(2) <l+_J_—>N—rlﬂ
) N—-—z-—1 /‘/l— n /‘/1+ n
(l_i_wn)"“’ n+ N N—-z-1
N

Now consider the limiting case in which N and z both approach infinity in such
a way that x = kN. This is the case in which we wish to find the probability that
in a very large future sample at most a fraction k of the observations will exceed
the largest value in the trial sample of n observations. Considering each of the
factors on the right side of (2), we have

lim (1 _zt 1>,. ALY

Zemk N —»00 N
n N-z—1+4n . (V n>N+n
1 R — = l e = "
z-%cll\rfrluo (1 + N —z— 1) zuklbl;'lloo 1 + N ¢
. n . n
- -1 g
;r:alkll\lfxloo 1 N—I—n z=k1)flr:uo 1+N'—x"']. 1
Hence, A
(3) lim W(n, 1, N,kN) =1 — (1 — k)"
N —w

The probability density, which may be obtained from (3) by differentiation,
is
(4) p(k) = n(1 — k)"

An interesting check on the consistency of the theory is a proof of (4) based
on Gumbel’s original discrete distribution of x. Setting m = 1 in equation (1.3)

of [1] we have
2)
n z

w(n,l,N,x)=N+n (N—{—(n—- 1)) .
z




297

DISTRIBUTION OF EXCEEDANCES

-

///

A
o

4
J
Ly
)
L
/I or//
<,

/ )

y <,

v/

/

Fic. 1

i

S0



298 R. F. LINK

Note that the factor in brackets is the same as the last term on the right side of
(1) with » replaced by n — 1 and = + 1 replaced by z. Hence for large z and N,

n-1
X

N—z+4n
(1+ )

—z 1/1__ n—1 /‘/1+n—1
(1+n—1)”+"‘1 N+4+n-—1 N -z’

By the same limiting procedure as before,

(5) lim w(n, 1, N,kN) = — (1 k)" L

Za=k N — 0
In any small interval dk, there are Ndk possible values that z can assume; hence
the probability that k lies in the interval dk is

A n I\l
(6) p(k) dk = 5 (1 — k)" (N dk).

Therefore, p(k) = n(1 — k)" This is exactly the result given by equation 4),
but obtained in a somewhat different way.

From the symmetry of the problem, limy_..., W(n, 1, N, kN) isalso the probabil-
ity that in a large future sample at most a fraction k of the observations will be
less than the smallest observation in the original trial sample of # units. Hence,
a life-test of n units may be discontinued as soon as any unit fails and equation
(8) will give the probability that in the future at most 1009, of the units will
fail in a time shorter than the length of the test. The graphs show W as a func-
tion of k for various values of 7.
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CORRECTION TO “THE SAMPLING DISTRIBUTION OF THE RATIO
OF TWO RANGES FROM INDEPENDENT SAMPLES”

By Ricuarp F. Link

Princeton Unaversity

In the note mentioned in the title (Annals of Math. Stat., Vol. 21 (1950),
pp. 112-116) the distribution given for the above mentioned ratio when the
sample values are drawn from a rectangular distribution is correct only when
R £ 1. This is pointed out in an article by P. R. Rider (‘“The distribution of the



