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Summary. Theorem 1 provides us with a result from which we can derive the
modified Schwarz inequality (1.2) or, more generally, (3.8). The formulas hold
when z(¢) is any nondecreasing function belonging to a certain wide class, and
2(t) is the right-hand derivative of the ‘“‘greatest convex minorant” of &(t). The
necessary and sufficient conditions for equality to hold are also given. Applica-
tions to distribution problems in statistics are discussed in Section 4.

1. Introduction. In a previous paper [1], the author made use of Schwarz’s
inequality in obtaining the least upper bound of an integral of the form

b
(L.1) f 2()elt) dt,

where z(¢) is a variable function and ¢(t) is a given function. However, if the
domain of variation of z(f) is limited to the class of nondecreasing functions, then
Schwarz’s inequality does not give the least upper bound unless ¢(f) itself is
effectively a nondecreasing function, because the equality holds only if x(t) is
effectively proportional to ¢(t).

In the present paper, we shall derive a modified Schwarz inequality

1.2) f " 0el0) dt < { f "2 dt}*{ f s dt}% ,

where (t) is a nondecreasing function closely related to ¢(¢). It holds for any
nondecreasing function z(¢) and for any function ¢(t) in a certain wide class, the
equality being satisfied if (f) = A@(f) holds with nonnegative constant coeffi-
cient A almost everywhere.

The relation between ¢(f) and @(f) is most simply stated by means of the con-
cept of the “greatest convex minorant,” whose definition and some of whose
properties we shall state in the next section.

The inequality (1.2) can profitably be generalized to (3.8), which reduces to
(1.2) if ®(¢) is absolutely continuous and () = ¢(?).

2. Greatest convex minorant. See for instance ([2] p. 440) and ([3] pp. 91, 94).
For a given function ®(¢) in a closed interval [a, b], we consider the supremum of
all convex functions dominated by ®(¢) in the whole interval. (A convex function
is characterized by the fact that the middle point of any chord of its graph
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lies above or on the curve.) Let it be denoted by &(f) and be called the greatest
convex minorant of ®(t) in the interval [a, b]. It is easy to see that ®(¢) itself is a
convex function dominated by ®(t).

In the following we consider only the case where ®(¢) is a function of bounded
variation in [a, b] and continuous at both ends. Then its greatest convex minorant
&(¢) is bounded above; hence, it is continuous (see the references). For every ¢ in
la, b], ®(t) < ®(t). The equality holds certainly at the end points because of the
assumed continuity of ®(f) there. The set of values of ¢ for which &(f) = min
{®(t — 0), ®(t + 0)} is a closed set (due to the definition of $(¢)). Therefore its
complementary set, that is the set of values of ¢ for which ®(!) < min {®(t — 0),
&(t + 0)}, is an open set and consequently either empty or the union of a de-
numerable number of disjunct open intervals. In each of those intervals, if any,
&(t) is a linear function, as follows from the definition of ®(¢).

As a continuous convex function, ®() has everywhere (except perhaps at the
end points) finite left-hand and right-hand derivatives; the left-hand derivative
is not greater than the right-hand derivative at the same point. Let us denote,
for the sake of definiteness, the right-hand derivative of ®(f) by @(f). Then @(t)
is of course a nondecreasing function and is consequently continuous except
perhaps for a denumerable set of values of ¢. #(f) is a constant in any interval
where () < min {®( — 0), &(t + 0)}.

3. Modified Schwarz inequality.
TrEOREM 1. Let ®(f) be a function of bounded variation in the closed interval
[a, b] and continuous at both ends. Then the relation

3.1) f "2 &) < ] " 200 di

holds for any nondecreasing function x(t) for which the integrals exist and are

finite, where (1) is the right-hand derivative of the greatest conver minorant ®(t)

of ®(t). The equality in (3.1) holds if and only if z(f) vs a constant in every in-

terval where

3.2) &(t) < min {®(t — 0), &(t + 0)}

and, at every point of discontinuity, if any, of ®(t),

3.3) z(t,) = z(t, + 0) when &, — 0) < &(t, + 0),
' = 2(t, — 0) nhen &(t, — 0) > &(t, + 0).

Proor. Let us first assume that z(¢) is bounded in [a, b] and hence of bounded
variation. So is ®(f). Therefore we can apply the formula of integration by
parts (See [4] for a formula which can be adapted to our purpose with a slight
modification.) and get

b b
(3.4) [ =6 F 0 de() = w2 ~ [ #0 F 0) da(t),

a
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where, at every point of discontinuity, if any, of ®(f), we take the smaller of
®(t — 0) and ®(t + 0) and decide the sign correspondingly. (We take for instance
z(t + 0) and ®(t — 0) if ®(t — 0) < &(¢ + 0).) Similarly, as ®(¢) is continuous,
we get

b _ b_
(3.5) ﬁﬂwwm=mmmm—f¢mmw

Thus we have
(3.6) f s(Op(t) dt — j ot F 0) do(t) = f (@t F 0) — B()} da(0),

the first term on the right-hand side of (3.4) and (3.5) cancelling because ®(t) =
&(t) at both ends.

Now, as stated in the previous section, {®(¢ F 0) — &()} in (3.6) vanishes
except perhaps on a set consisting of a denumerable number of open intervals,
where it is positive. Therefore, (3.6) is nonnegative and vanishes if and only if
z(t) is constant in every such interval.

The difference between the left-hand member of (3.1) and the second term
of the left-hand member of (3.6) can come only from the contributions at the
points of discontinuity of ®(t). Thus

(37) [0 F 0) do0 — [ 2(0d80

= > {z(ta F 0) —2(tn)} {®(tn + 0) — ®(t. —0)},

summation taken over all points of discontinuity of ®(¢). Since z(t, — 0) =
z(t,) < z (t, + 0), and in view of the above-mentioned choice as to the double
sign, it is clear that each term is positive unless z(t,) = z(t. &= 0). Hence, (3.7)
is nonnegative and vanishes if and only if (3.3) holds at every ¢, .

Adding (3.6) and (3.7), we get an equation expressing the difference between
the two members of (3.1) as the sum of the two nonnegative quantities. Hence
(3.1) holds. In order,that the equality in (3.1) hold, it is necessary and sufficient
that both (3.6) and (3.7) vanish. Thus the theorem is proved for bounded xz(t).

When z(t) is not bounded in [a, ], we can still derive (3.6) by taking the limit
of a sequence of similar formulas for narrower intervals. The rest of the proof
does not need any change.

CoRrOLLARY. Under the same assumptions, the relation

(3.8) f " 20 () < { f o dt}% { f o) dt};

holds for any nondecreasing function x(t) such that the integrals including x(t) exist
and are finite. If a(t)* is summable in (a, b) and if @(t) is not identically equal to
zero in (a, b), then necessary and sufficient conditions for the equality in (3.8) to
hold are that x(tf) = A@(t) almost everywhere (with nonnegative constant coefficient
A) and that x(t) satisfy (3.3) at every point of discontinuity, if any, of ®(t).
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Proor. The ordinary Schwarz inequality applied to the right-hand member
of (3.1) leads us to the inequality (3.8).

We note that (3.8) may be called a modified Schwarz inequality.

As a particular case of (3.1), the inequality

b b b
(3.9) / z(e(t) dt = b%a f z(8) dt f o(t) dt
can be derived for any nondecreasing functions z(f) and ¢(t), both summable in
(a, b). This is Tchebycheff’s inequality (See [3] p. 168, Theorem 236). Inciden-
tally, a change of variables leads us from (3.9) to a formula which implies the
one on p. 601 of [11].

THEOREM 2. Let ®(t) be a function of bounded variation in [a, b] and continu-
ous at both ends. Let moreover its value be the same at both ends. Then for any non-
decreasing function x(t) belonging to Ls(a, b) and summable with respect to &,

(3.10) f bx(t) as(t) < [ f ' {z(t) — C}? dt:r{ f ' #()? dt}*,

where C is any constant and @(t) is the right-hand derivative of the greatest convex
minorant ®(t) of ®(¢). If @(t) belongs to La(a, b) and is not identically equal to zero
in (a, b), then the equality in (3.10) holds if and only if x(t) — C = A@(t) almost
everywhere (with nonnegative coefficient A) and (3.3) hold at every point of discon-
tinutty, if any, of ®(t).

Proor. The integral on the left-hand side of (3.10) does not change its value
if one replaces z(¢) by x(f) — C. Therefore we get (3.10) from (3.8).

We note in particular, that if C' is chosen as the mean value of z(¢) in (a, b),
the first factor on the right-hand side of (3.10) reduces to the standard de-
viation.

4. Applications to distributions. Let us consider the inverse function (Cf. [3]
pp. 152-3, [5] p. 189.) z(F) of the cumulative distribution function F(z). Then
for instance () may be called the a-quantile. (F) is a nondecreasing function
of Fin (0, 1). We assume that it belongs to L.(0, 1).

ExawmpLE 1. The distance between the a-quantile and the mean EX is given by

1
@.1) 2(a) — EX = f =(F) da(F),
0
where
4.2) &(F) = —F when 0 £ F < q,
’ =1—F whena £ F <1

Theorem 2 is applicable here, leading us to

4.3) —Vl““g’”(“)_EXé «

1 —a’




SCHWARZ’S INEQUALITY 111

We note that (4.3) has been derived and used by Hoeffding [6]. It is equiva-

lent to the inequality (cf. [7])
b2

44 ( < = .
(4.4) Pr{.X_EX+ba}_b2+1 b >0

In the special case where a = 1, (4.3) tells us that the distance between the
median and the mean can never exceed the standard deviation (cf. [8]).

ExampLi 2. The distance between the expected value of the i-th smallest
member in the sample and the population mean is given by

(4.5) EX: — EX = fo () o(F) dF,
where
(4.6) o(F) = n PN - P - L

@—=Dtm —)!

Here again Theorem 2 is applicable. If 7 equals neither 1 nor n, then the func-
tion @(F') turns out to be

o(F) = o(F) when0 < F < F,,
= o(Fy) when F; £ F <1,

4.7)

where F; is determined by

1 .
48  A-Faem) = [ o, o<k <Fh=:T1.

The integral on the right-hand side can be evaluated by means of incomplete
Beta function. If n is not very large, the tables of the incomplete Beta function
[9] will be satisfactory. Then we can compute the least upper bound of (4.5) for
given population standard deviation. The bound is actually attained for a par-
ticular distribution z(F) = A@(F). This is a mixed distribution with concen-
trated probability on the value + = Ap(F,) and distributed probability on the
interval (—A, Ap(Fy)).

For ¢ = n (i.e. for the largest member), ¢(F) is monotone increasing. Conse-
quently, the ordinary Schwarz inequality will suffice to get the least upper
bound (n — 1)/4/2n — 1-0. (This is naturally a larger bound than the for-
mula (3.6) of the previous paper [1] which is applicable only to symmetrical
populations.) The bound is actually attained for a particular distribution
2(F) = Ao(F).

A few numerical results for the sample median are shown in Table 1. Also
shown are the results given by ordinary Schwarz inequality. This illustrates the
improvement obtained by the present method.

ExawmpLE 3. For z(1 — 8) — z(a) we get
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¢(F)=—£, 0=<F <a,
(4.9) =0, a=F<1-5
1
= 2 1-8=F<],
B B
and finally
(410) 21 — 6) — 2(a) < 4/l+la.
a B

We note that by putting & = 8in (4.10), we obtain z(1 — &) — z(a) £ ev/2/a.
This is, for symmetrical distribution, equivalent to the Tchebycheff-Bienaymé

TABLE 1

Upper bounds for the difference between the expected value of the sample median
and the population mean measured by the population standard deviation
{EX(n+1)/2 — EX}/o

Sample size n Least Upper Bound Or;{: ::; ]SB:}?v?:rSlI‘r;zz:g;i ty

3 .27099 .44721
5 .37659 .65465
7 .43918 .79480
9 .48291 .90226

11 .51604 .99019

13 .54221 1.0650

15 .56374 1.1305

17 .58210 1.1888

19 .59776 1.2416

inequality. The latter, in the general case, can be derived by applying the above
formula after symmetrizing the given distribution.

ExampLE 4. For the expected value of the difference of two order statistics,
(3.10) leads us to

1 1
(411) B(X, - X)) s { [oter arf,
0
where @(F) is to be obtained from
_ n! yi—1 _ n—1i
) =@t ¢-P

(4.12)
n!

T G-Din—19

PRI — P
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Thus, if ¢ = n,5 = n — 1, then
@(F) = ¢(Fs) 0SF<F,,
(4.13)
= ¢(F) F, = F <1,

where Fo = (n — 2)/(n — 1).
Ifj=n — ¢+ 1, then

—o(Fy) 0SF<1-—-F,;,
(4.14) o(F) = o(F) 1—-F,=F<F,,
¢(Fs) F, 2 F <1,
where F. is determined by
1
(4.15) (L= F)eF) = [ o) dF. 1<F <l
F2

The case where ¢ = n,j = 1 (i.e. the case of the “sample range”) is an exception,
but it has essentially been discussed already (cf. [10] and [1]; E(X, — X1)/c
is equal to twice the corresponding value in Table 1 of [1]).
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