ON A CLASS OF PROBLEMS RELATED TO THE RANDOM DIVISION
OF AN INTERVAL

By D. A. DArLING
Colimbia University

Summary. Let X, X;, -+ , X, be n independent random variables each dis-
tributed uniformly over the interval (0, 1), and let Y,, Y3, ---, Y, be the
respective lengths of the » -+ 1 segments into which the unit interval is divided
by the {X;}. A fairly wide class of statistical problems is related to finding the
distribution of certain functions of the Y;; these problems are reviewed in
Section 1. The principal result of this paper is the development of a contour
integral for the characteristic function (ch. fn.) of the random variable W, =
> ro hi(Y;) for quite arbitrary functions h;(z), this result being essentially
an extension of the classical integrals of Dirichlet. The cases of statistical
interest correspond to hj(x) = h(zx), independent of j. There is a fairly extensive
literature devoted to studying the distributions for various functions h(z). By
applying our method these distributions and others are readily obtained, in a
closed form in some instances, and generally in an asymptotic form by apply-
ing a steepest descent method to the contour integral.

1. Introduction. The statistical problems mentioned above are divided roughly
into two classes: problems related to considerations of the Poisson stochastic
process occurring in the study of infectious diseases, traffic flow, etc., and prob-
lems pertaining to certain nonparametric tests of the hypothesis that a given
set of data came from a hypothetical cumulative distribution function (cdf)
F(z), which in turn are related to certain ‘“goodness of fit” problems.

In 1946 Greenwood [6)], in connection with a problem in epidemiology, posed
the general problem of testing whether a given set of points on the unit interval
could have arisen from the independent selection of points X; described above,
or whether the set of intervals Y; they generate are too nearly equal for this
hypothesis to be tenable. He suggested the statistic W, = > roY:and gave
a few properties of its distribution. Later Moran [11] proved that W, had a
limiting Gaussian distribution for n — .

If Uy, Uy, -, Usaren + 1 independent random variables each having the
density B¢, 8 > 0,2 > 0, and if s, = Uy +, -+, 4+ U., it is a well known
fact that the joint distribution of {U;/s.}, 7 = 0, 1, - -+, n is the same as the
joint distribution of {Y;},j = 0, 1, - -+, n, the successive lengths of the inter-
vals into which the unit interval is divided by n random points. This corres-
pondence has been used in studying the Poisson stochastic process (cf. [3] chap.
17) in which the interval between successive occurrences of the phenomenon
are the U;. In Greenwood’s example these phenomena were the outbreaks of

infectious disease.
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210 D. A. DARLING

In these examples the statistical problems can be reduced to evaluating the
distribution of W, = 2_ h(Y;). In place of Greenwood’s suggestion of h(z) =
#’, other suggestions were made (cf. the discussion of [6]). Kendall suggested
that k(z) = |z — 1/(n + 1) | might be analytically more tractable and Irwin
suggested h(z) = (n + 1)@ —*1/(n + 1))%. For an analysis of the distribu-
tion properties of the extreme ¥, (or U;) it suffices to consider an A(x) which
is 1 for @ < z < B and zero otherwise. A variety of problems can be reduced
to determining the distribution of W, = > h(Y;) for h(z) of this form. Gar-
wood [5] studied some extremal properties of the Y; in connection with the
occurrence of traffic vehicles on a highway. Fisher [4] had made a similar use
in 1925 on the distribution of an extreme amplitude in a problem in harmonic
analysis. Kendall made the suggestion of studying the difference (or quotient)
of the largest and smallest Y; as being a more sensitive test function for the
equality of the ¥; than Greenwood’s sum of squares.

Let X1, Xs, - -+ , X, be independent identically distributed random variables
with the common continuous cdf F(z). Let them be relabeled so that X 1 <
X; <, -+, < Xnand put Xo = — o, Xn41 = + . Then, asis well known, the
joint distribution of {F(Xj..) — F(X 2,7 =0,1,--- nis the same as the
joint distribution of the {Y;},j = 0,1, - -+ ,n. Givenaset of n data 1, 2., - - -,
. arranged in increasing order (with 2y = — o, #n,q1 = -+ ®) a possible test
of the hypothesis H that they came from a population whose cdf is F(z) con-
sists in choosing a function h(x) and rejecting H if Z h(F(zjy1) — F(z;)) is
sufficiently large or sufficiently small. Thus the basic problem is, as before,
calculating the distribution of W, = > k(Y ) for various functions h.

Kimball (7] suggested h(x) = 2% « > 0, and gave some partial results for
the case @ = 2. The asymptotic character of W, for @ = 2 was later analyzed
by Moran [11] who proved W, has a limiting normal distribution for n — .
Sherman [13] treated the case h(z) = 3 |z — 1/(n + 1)|. It will be noted
that these tests are somewhat related to the Kolmogoroff-Smirnov tests (cf.
[1]) of the “goodness of fit” criteria. A discussion of the relative merits of these
tests seems quite academic in view of the complete lack of information con-
cerning their power.

In the present paper we give a unified treatment of these distributions. In
Section 2 we develop a simple formula for the ch. fn. of the random variable
W, = 3 h;j(Y;) (Theorem 2.1) which is essentially an extension of the Dirichlet
integral (Theorem 2.2). In Section 3 we study the joint distribution of the Y,
finding the joint ch. fn. (Theorem 3.1) and the distribution of Yo + Y1 +, -+ -,
+ Y, . In Section 4 we put W, = Z h(Y,) and develop a few moments of W,
useful in the subsequent work, and in Section 5 we give the asymptotic distribu-
tion of W, for h(z) = 2% the statistic of Greenwood, Moran and Kimball (Theo-
rem 5.1). In Section 6 we analyze the distribution of Sherman and in Section 7
present two more possible test functions which yield readily to our methods.

In Section 8 we study the random variable N.(a, 8), the number of those
Y, satisfying @« < Y; < 8,7 = 0, 1, --+, n. As special cases we obtain the
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limiting distributions of the number of intervals of “average” size, ‘“‘small”
size and ‘““large” size (Theorems 8.1, 8.2 and 8.3, respectively) and the joint
distribution of the largest and smallest Y; for finite n (Theorem 8.4).

2. The fundamental formula. Let Y, , Y, ---, Y, be the lengths of the
n + 1 intervals into which the unit interval is divided by n random points.
The following theorem is the basis for the subsequent analysis in this paper.

THEOREM 2.1. Let fo(x), fi(x), - -+, fu(x) be n + 1 real-valued functions for
which the abscissas of convergence of the corresponding Laplace transforms are
all less than c. Then

n! c+ i n © i
Q1) BGYIRT) - ¥ = g [ e TT | 7 s(ey) dry ds

the path of integration being the straight line Re z = ¢ (where Re z denotes the real

part of z.)
Proor. We have

on F (f.[f,m)) —n [ [ o [ e —

=0
M fn—l(xn - xn—l)fﬂ(l - xn) dxl dx2 T dxn

since the joint distribution of the » random points, when arranged in order,
has a uniform density differential n! dz; dx; - - - dx, over the simplex 0 < z; <
2p £ -+ £ z, £ 1. The trick in ‘“evaluating” this integral consists in con-
sidering the following function

r o Zn gt 23 22
Foy = [[7] T | et = )

<o fa@n — Tac)falr — ) day das - - das
which we want to evaluate at » = 1. But it is clear that written this way F(r)
is merely the convolution foxfix * - - xfa(r) whete g(x)xh(z) =-/(; zg(x — Bh() dt.

Since Laplace transforms multiply undér convolution we obtain
f Fe™ dr = 11 f e fi(r;) dr;
0 j=0 JO

provided Re z > ¢. We now simply apply the complex inversion for the Laplace
transform to obtain
ot i
eZ‘

1 A ® ~7jz .
F(z) = 2mi fé_im JI_lo j; e fi(r;) dr; dz,

and the theorem follows if we put + = 1 and supply the factor n!.
. It is interesting to note that in (2.1) the value of the integral apparently
depends on the value of the f;(r) for » > 1 while in (2.2) it does not. As a matter
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of fact the functions may be defined quite arbitrarily for » > 1 and not affect

the value of (2.1).
THEOREM 2.2 Let D be the domain in E, defined by t; = 0, D1 t; < 1. Then
for the fi(x) as in Theorem 2.1

J[ - [5h@ - fos WA =t =t — o — ) bty - dty
1 o+t n /Jo .
- — z —Tiz . .
2mi fc_iw e JI=IO hoe f(r;) drj de.
To prove the theorem we merely make the change of variables in 22) 4 =x
b =2 — 2, ,tn = Tn — x,_; for which the Jacobian is 1.
Theorem 2.2 is, in a sense, a generalization of the integral of Dirichlet—
that is, putting fo(x) = 27, fi(x) = 27, .-, faa(x) = 2™ a; > 0, and
folx) = f(x) we obtain

ffD fti"“‘ t2 T (L= Xt dhdb - - dt,

1 ot i n @ ©
- z —riz a;—1 3 —~rz
O fc—-ieo e JI-]i[o e i dr; fo e f(r)drdz

(2.3) .
= ﬁ T'(a -)fmf(r) L f&m & 272 gy dr
j=1 7 0 271 c—10

_ HP(“J’) fl W) Za-1
= ey b a-r f@r) dr
since the inner complex integral in (2.3) is zeroif r > 1 and is (1 — )%/
T(2 a;) if 0 < 7 < 1. This is the classical Dirichlet integral usually developed
through the theory of the Beta functions, (cf. Whittaker and Watson [17p.

3. The joint distribution of the {Y;}. By means of Theorem 2.1 we can give
certain properties of the joint distribution function of the ¥;,j = 0, 1, -+ - , n.
For the ch. fn. of the Y; we have the following theorem.

TurorEM 3.1. If t; % &; for © # j, and if n = 1, then,
it

E(ei(tol’o-l-tlY1+---+l,.Y,,')) =n! Z": €
7=0 kg i(?:tj b 'Ltk)

and s defined for other values of the t; by continuaty.
To prove the theorem we put f;(Y;) = ¢"/¥/ in Theorem 2.1, giving

E(ez‘ztil'i) = n_! fc-H“A . e dz
. n
271 c—100 j,I_Io(z _ th)
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and if all of the ¢; are unequal the integral can be replaced by a contour integral
surrounding the simple poles. A simple application of the theory of residues
then establishes Theorem 3.1.

If some of the ¢; are equal we proceed in the same manner. For instance if

{t, i=0,1,---,»p—1

0, t=vv+1,---,n

t,'=

we obtain the ch. fn. of z, = 2 =3 Y;, the »th smallest ordered observation
from n observations taken from a rectangular popuiation. Then
A 1 c+ 100 ez dZ
E iz, == & f T e
(™) 2w% Je—iw 2vH (2 — i1)”
which again can be evaluated by residues, albeit somewhat awkwardly since
tne poles are no longer simple. But the density for z, is simple to calculate by
considering
‘—1_ ./-c+t'eo N P dz
218 Jomiw 2"z — 0t)”
as the inversion of the product of two Laplace transforms
1 R f ® —82 N—V d 1
I‘(n—v+1)oe s § =
1 ® —sz ist _v—1 1
I‘(v)fo e e’s T ds = G-
Consequently taking the convolution and putting x = 1

n!

I'(n — v+ 1T()

and thus the density of , is the Beta function n!s" (1 — s)"/T'(n — » + 1)T'(»)
as is well known. Other properties also related to the distribution of order
statistics from a uniform distribution which have been proved recently by
Malmquist [10] may be treated in a like manner.

An evaluation of the mixed moment E(H,-Y}"') is, of course, easily given
in terms of the Dirichlet integral of the preceding section.

-1
E(ezu‘v) = jo eutsv—-l(l _ s)n—v dS

4. The distribution of W, . The statistical problems mentioned in Section 1
may all be reduced to finding the distribution of W, = Z?—o h(Y;) for certain
functions h(x).

By putting f;(z) = ¢ in (2.1) we obtain

. ! c+ 100 © )
(4.1) E(e™) = n f ew< f Pl a0 dr)n-l—l aw,
H . o

2’)!"1: —100
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and from this expression we propose to study the distribution of W, =

2 (Y.

As a preliminary we find the first two moments of W, which will prove useful
in the work to follow. If j R‘(#) dr is finite it is simple to see the (4.1) can
0
be differentiated k times under the integral sign with respect to #f. Differen-
tiating once and putting ¢ = 0 we obtain

c+70
= B(W,) = 5= f W (n + 1) f ~% h(r) dr AW

c—in

(n + 1)!/(; h(r) -—f W W dr

c—1i0

(4.2)

nn + 1) Ll’(l — )" 'h(r) dr.

Similarly by differentiating twice ad setting § = 0 we obtain the second
moment

' c+1%0 g N
i = EOWE) = P eﬁ+‘/”wmw
0

271 Je—in I’V"
nin+1/(1° _, 2
+ ( [ emhe) dr) }dW

wp =+ fo (1 = ") dr + n(n + 1! f ) f " RrDh(r) =

¢+
f AL il aw dry dr,
1
c—1%0 IV“ -1

1
=+ 1) £ (0 = )" () dr + 2’ — 1) ff0§r1+r2§1
r120,r220.

‘(1 = 7y — )" *h(r)h(rs) dry drs.

From (4.2) and (4.3) we can calculate the variance ¢ = p» — u}, and pro-
ceeding in a similar fashion we can develop all moments if they exist.

6. The distributions of Greenwood, Moran and Kimball. Greenwood [6] sug-
gested h(z) = 2°, and Irwin in the discussion of his paper suggested h(z) =
(n + 1)7'(z — 1/(n + 1)°. Moran [11] later found the limiting distribution of
Greenwood’s statistic was normal. Kimball [7] proposed h(z) = 2" for @ > 0
and found some partial results for case a = 2.

In this section we find the limiting distribution for the casé h(z) = z*. We
have the following theorem.
 TueoreM 5.1. The random variable W, = D Y3, a > 0, a 1, has a limiting
normal distribution with the limiting mean and variance
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NI‘(a + 1)

» ne-l1

b

o ~1% (T@a'+ 1) — (o + DI + 1)},

respectively, that is,

: W,. — Hn .L i —t2/2
l:?”Pr{—crj‘— <x}—\/§; eoe: dt
for u. and o* as above.

Of course if @ = 0 or « = 1 we have ¢, = 0 and it might be proper to speak
of W, as having a degenerate normal distribution.

This theorem will follow by applying a slight variation of the method of
steepest descent to the integral (4.1). The proof is given in a fair amount of
detail and will serve as a model for the later distributions whose treatment
follows essentially the same pattern and for which we give considerably less

detailed proofs.
Substituting h(z) = z” in (4.2) and (4.3) we obtain for the first two moments
_ I'(n + 2)
w = T(a+1) Tt at D)’

_ I'(n + 2)
M= T+ 22 + 1)
The asymptotic character of these moments is easily obtained through the for-
mula

Qe + 1) — al*(a + 1)).

T l—ﬂ(ﬁ—l)'l“a<—l—> B20, n—ow

Tm+8) w2 ' O\
giving
_Tla+1) _ (@ = 1)(a —2) <1>
M= mrya - Tet ) e+l

_ Ila+41) 1 3 _
7 o + m o CCa+1) — I'e + 12’ - 32 + 3)
1
+ 0 (n2a—l>

from which we deduce
~ I'(a + 1)

" nel

6.
o~ (0@a + 1) = (o + DI¥(a + D).
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Thus for @ > 3, o» — 0 and for @ < %, o3 — « while in the transitional case
o = % we have o2 — 1 — 51/16.
Using (4.1) we obtain for the ch. fn. of W, = >_ V§

.' * n! c+ i » ® N n+1

en(§) = E(exp(itW,)) = s— f e f e dr) dw
278 Je—io o

for ¢ > 0. Letting ¢ = (n + 1)**%, W = (n + 1)z and shifting the contour

parallel with itself we find

c+ 0
62 pulln+ D) = LEDL L[ e, ) ds

where
(5.3) B.(z, ) = (n + 1)z f gDt Do g
0

Now it will turn out that (B.(z, t))"*" is, aside from a multiplied factor de-
pending on n and ¢ but independent of z, actually a bounded function approach-
ing a limit as n — « for J ¢ | bounded and z arbitrary. This suggests that relative
to the dominant term e¢"*?%™" this factor will cause negligible interference
when n — o, (cf. Szegd [14], p. 220 who treats an example very similar to this.)

If we write ¢"*P%" ! = /@ then f(z) = 2z — log z where log z is real
when z is real and positive. Then since /(1) = 0, f”(1) = 1, the saddle point is
z = 1 with the critical direction parallel to the imaginary axis. Hence in (5.2)
we merely take ¢ = 1 to get the contour of steepest descent.

Thus we put
W A
(5.4) z=1+ \/m, dz = \/n F1
for y in the domain
(5.5) -+ 1) <y <(n+ 1), 0<s6<i

and the entire integral has its essential contribution in this range—the value of
the integral extended over the range complementary to (5.5) becoming negligible
as n — o after we have modified B.(z, t) by a factor independent of z. With
the substitution (5.4) we find
| L (n—'i'l)!en_ﬂ_ [(n+l)‘ —v?/2 n+l
en((n + 1)) = W+ D5 Lo © (Ba(z, )" dy(1 + o(1))
(5'6) 1 (n+1)$ .
— — —v3/2 n+1
= [ B ™ a4 o)
by using Stirling’s formula for (n + 1)!.
Next we turn to B, (z, ¢) as given by (5.3). By standard methods we obtain
an asymptotic expansion (cf. Watson [16])
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B.(z, 1) = (n + 1)2/ (Tt
0

{1+ itln + D + 360 0 + )™ + -} dr

(e + 1) y2FQ2a + 1) I'Ca +1)
o F D @ + D=

and for z as in (5.4) and y in the range (5.5)

=1+ + 3 + o(1/n)

S :
(1 i) =1~ e+ o

3 —2a
— (7 1y -
= (i) e
so that

(n + 1) log B.(z, t)

_ (e + 1) 2 T2a + 1)
= (n + 1) lOg{l + m + ‘%('Lt) m + o(l/n)}

]
= v+ 1 B 4 36" rea + 1)~ + D) 5 + o)

-

| —

-4

= (n+ DYt (e + 1) —tyel(a+ 1) + 3()° (CQa + 1) —T*(a + 1)) +o(1),
Using this estimate in (5.6) we obtain
ea((n + 1)°7) exp (— (n + D*tr (o + 1)) = exp{—3}’(T(2a + 1) — T(a+ 1))}

(n+1)3

\% 21!‘ -[(n+1)‘

_.,,1/2—tval‘(°+l) dy(l 4+ 0(1))
and hence

lim Elexp @t((n + 1) W, — (n + D)'T(a + 1))]

RV  Wa— (n+1)"""T(a + 1)))
= 1..11_1.: E (exp (zt ]

= exp{—3'T(2a + 1) — IM(a + 1))} \/_‘[ —y%/2—tyaT(a+1) dy
= exp{—3'T2a + 1) — (& + 1)I*(a + 1))}

which establishes the theorem, and gives an independent derivation for the

asymptotic moments.

6. The distribution of Sherman. To avoid some of the difficulties pertaining
to the case h(z) = z* Sherman [13] considered the case h(z) = |z — 1/(n + 1) |.
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Kendall ([6], discussion) had suggested that such a function might be easier to
treat because of the simplification of the geometry of the integration. Sherman
gave the distribution of W, = 1> | Y; — 1/(n + 1) | and proved it had a
limiting Gaussian distribution.

In this section we develop the distribution of W, using (4.1). Here the inner
integration can be performed explicitly and the analysis is much simpler. We
have in fact

® i/2(n+1) _ —z/(n+1) —z/(n+1)
—_ 2 — e — e
(6.1) f gl GD] g,
0

[

z + 31t +z—%i£

so that using (4.1)

nl [T [pEAMED _ Dt (D) w1
en(t) = 5ms : = + - dz
, 1 Je—ico z 4+ 3if z — 3¢
B nl fc+i°° 1 + e(n+l)’1(z+ii9__ 1 n+ldz
218 Je—iw |2 — 3¢ z 4+ 3¢

n! ./-t-Hn %l (’n + 1>(e(n+l)‘l(z+h'£)__ 1):‘ dz
27t Jemin 5=0 j z + 3t (z — Lip)mti—i
CwE (Y L e (e gy
=1 J (n — )t d(sg)~ ¢
by a simple application of the theory of residues. From this ch. fn. we can easily

deduce the density for W, .
We rewrite the preceding expression

n -i i/ (nt1) j
= n-i.-1> 1 Ad"’(e —1>
o® =0 % (" 1) =g o= (e 0
and invert termwise. Let X, , X, - - - be independent and uniformly distributed
over (0, 1). The density of X; + X: + --- + X is then (cf. Cramér [2], p. 245)

1 k(7 -1 .
(62) 30 =t Z =) e-pt 0<e<i

Then the density for 1/(n + 1)(X; + Xa + -+ + X;) is (n + 1)fi((n + 1)z)

and the ch. fn. for it is
(ﬁn-’-l) _ 1):'
#/(n+1)/)°

n—j # (D) q\J o ‘
dzliz)"-" (:E/(n + 1)1> = L e¥z"(n + 1fi((n + 1)z) d.

Having inverted the typical term in ¢.(£) we obtain for the density of W,

® (n 4 1\ & + 1))
! E( i ) m = )l + D

Hence

=1

with f;(z) as in (6.2).
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It is also simple to get an asymptotic distribution for W, following the pattern
of Section 5 exactly. If we put z = (n + 1) + (n + Yy, £ = (n + 1)in
(6.1) we obtain after some easy estimates

3

{-.]
f DI g
)

1 ite”! By o t* }
_5{1+(n+1)*+n+1(2e -3 —m+0(1/n) ’

and we choose the same contour as before with ¢ = 1. These same substitutions
yield

nle* dz/z" ™ = in/2re " dy(1 + o(1))
as in the preceding example so that )
- 1 @ -
g0"((", + l)it)e—ft(nﬂ)‘e 1 — —2,;_[ e—v’/2+w(2s l_i)_t’/S,dy
E(eit(n+l)i(w,|—c‘l)) N e—t’/2(2e“—lc"’)

which exhibits the approach of W, to the normal distribution.

7. Other possibilities. If we put h(z) = log x we can evaluate ¢,(£) explicitly,
obtaining,

c+io0 .0 . n+1 ntl/ .
n! f es (jo e—n+z£logr dr) dz = P(n + I)P (145 + 1)

enld) = 5— I((n + D@+ 1)

Setting £ = (n + 1) and using Stirling’s formula we get
log ¢a((n + 1)) = —it(n + 1)*(log n + v) — 3£°(=*/6 — 1) + o(1)

and it follows that Y, log Y, is asymptotically normally distributed with
asymptotic mean and variance —(n + 1)(log n + %) and (n + 1)(=*/6 — 1)
respectively, v being Euler’s constant, y = .577 --- .

- In the preceding examples we have always obtained a limiting normal distri-
bution and it seems a reasonable conjecture in analogy with the central limit
theorem that we will generally obtain the asymptotic Gaussian distribution
when the two moments (4.2) and (4.3) exist. But it appears very difficult to
prove a theorem of this generality. We next give an example for which we do
not obtain the normal distribution.

Let h(x) = 1/z; then since

jo' T g = ;-2\/5 K2VE), £>0, Rez>0

where K,(r) is the Bessel function, (cf. Watson [16]), we have for the Laplace
transform of the density of W, = X Y7

c+1o0
f €2 (2VE Ki(2VE)™ de.

—100

—100

—EWny _ 1"'_
EE) 271
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Again letting z = (n + 1) + y(n + 1} and £ = #(n + 1)™" we have
2V EKi(2VE2) — 24/t K1(2+/%) and this expression is the Laplace transform for
the density whose cdf is ¢, 0 < 2 < . It will follow then that W./(n + 1)
has the same limiting distribution as the sum of (» 4+ 1) independent random
variables each having a cdf ¢7"/%, ahd thus that this limiting distribution is a
quasi-stable law of exponent 1 (cf. Lévy [8], p. 208).

8. The number of intervals satisfying certain inequalities. Let N.(a, 8) be
the number of those Y ; which satisfy « < ¥; < gforj = 0,1, - -+, n. A number
of statistical problems relate to the distribution of N.(a, 8) as we have outlined
in Section 1.

If we put

a<r<§g

h(r) =
g {0 otherwise

then N,(a, 8) = 2 h(Y;) and our preceding discussion is applicable in studying
the distribution of this random variable.

Using (4.1) we have

E(efENn(a.ﬂ)) — _"L'_ fﬁ-m elf/@ e—r:+iEh(r) dr}n+l
278 Je—in l o
(8°1) 1 c+io0
=1 f ' I 4 (¢ — 1) (67 —eH)}" dz
and this expression will be a basis for the analysis of N, .

“Most” of the Y; are presumably of the order of magnitude (n + 1), and
we first find the asymptotic distribution of the number of those Y; which lie
between a/(n + 1) and b/(n 4 1).

TueoreM 8.1. The random variable N.(a/(n + 1), b/(n + 1)) is asymptoti-
cally normally distributed with an asymptotic mean and variance

o~ (n + 1) — 3—6)
du~ (0t 1) — ¢ — (ae™ = b)),
The proof parallels the analysis of Section 5. Puttingz = (n + 1) + (n + Dy,
£ = (n+ 1) in (8.1) we deduce easily
14 (eig _ 1) (e—m/(n-H) _ e—sb/(n+l))

_ A & Ol
Sl ey -

ty —a
2(n 4+ 1) + n+ 1 (ae™ — be™) + o(1/n)

and thus
E<exp{i Z;'_!—f'l‘)‘aN»(a/(n + 1),b/(n 4+ 1)) — it(e™ — ™) (n + 1)’})

—12/9(e—a—e~b —y2 - ~b
__)e/tl2(e°c ) 6u/2+m(a¢ a—be )dy

va L
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 N.a/(n+1),b/(n + 1)) — (n+ 1) (* — )
E<exp {zt TR })

] — e—t’/2(e—“—e'b—(ae'“—be"b)’)’

which proves the theorem.

We next analyze the distribution of the number of “small” Y'; . It turns out
that with probability 1 only finitely many are of the order of magunitude
(n+1)"asn— w.

THEOREM 8.2. N.(a/(n + 1)°, b/(n + 1)*) has an asymptotic Poisson dis-
tribution with parameter (b — a). That is

lim Pr{N,,(a/(n+1)2,b/(n+1)2) =k} = e Tkt k=0,1,--

7n—rc0

To prove the theorem we put @ = a/(n + 1)°, 8 = b/(n + 1)* and
2= (n+ 1)+ (n + )%y in (8.1), giving

(] + (eiE _ 1)(e—za _ e—n))n+l - G(H)““_D(l + 0(1)),

and we ha.ve, arguing as before,
i 2 — [ ¥
E( ¢N,(a/(n+1)2,b/(n+1) ’)) (b—a) (ei¢. l)

which establishes the theorem.
The distribution of the number of “large’” Y ; proceeds in a similar way.
TaeoreM 8.3. N.((log (n + 1) + a)/(n + 1), (log (n + 1) + b)/(n + 1))
has an asymptotic Poisson distribution with parameter (¢~ — e?);

. log(n+l)+alog(n+1)+b>_ }
l,f?.opr{N" n+1 ' aFfl =k
—a —b\k
= e—(e"“—-e"') (e ;Ie_) , k=0, L.

Thus only finitely many intervals are as large as log n/n asymptotically with
probability 1. To prove the theorem we put

logn;:-l

“=ZFi P aEr

n41
e a a<b

in (8.1) and take z = (1 + 1) + (n + D'y giving
(1 + (eif _ 1)(e—za _ e—zb))n-(-l — e(b—q)(,o‘é_l)

and the rest of the proof proceeds as before.
# From 8.2 and 8.3 we can find the asymptotic distribution of the largest Y;

and the smallest Y. Let, in fact, U, = min (Yo, Y1, -+, Y3) and V, =
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max (Yo, Yy, .-+, Y,). Then puttinga = 0, k = 0 in Theorem 8.2 and b = o,
k = 0 in Theorem 8.3 we obtain

nm Pr{U,. > b/(n + 1)} = e, 0<b< >

hm Pr{V < log (n-:_ll) +a} e, — o <a< .

These two expressions were given by Lévy [9] using geometrical arguments.
It is possible to show that U, and V, are, besides, asymptotically independent.

If weput @ = a/(n + 1)’ and 8 = 1ogn + 1/n 4 1 in {(8.1) and duplicate the

above reasoning we get

log(n + 1) — logb )
n+41
However by taking a different attack we can get more precise information

about the joint distribution of Un, and V,.
TaEOREM 8.4.

PriU, > a,V, <8} =Prla<Y;<B,j=0,1, - ,n}
=X ("“)( D (1 = aln + 1 — 5) — )"

N

lim Pr{U,. >a/n+ 1%V, <

n =0

(8.2)

where 3_* means to include only those terms for which 1 — a(n + 1 = j) — 85
s posttive, j = 0, 1, <-- .

The required probability is clearly the probability that N.{a, 8) is equal to
(n 4+ 1). Hence in (8.1) if we expand the factor in braces and select the co-
efficient of ¢*™*” we get

1 c+30
Pr{N,(a,B8) =n + 1} = 2”:1 [ . et (6 — e_,ﬂ)n+1 dz

=5 v

and this is equal to (8.2) by a direct application of the residue theorem.
Putting @« = 0 we obtain the probability that all intervals Y, are less than g8

prive<e = T (") v - ar

0<7<1/8

c+ 00
f HImant =) —Bi) —n—1 g,
(2

—jo0

a result going back to Whitworth [18] and used by Fisher [4] in studying the
significance of the largest amplitude in harmonic analysis, and by Garwood (5]
in traffic studies. Setting 8 = 1 in (8.2) we have only the term correspondmg to
j = 0in the series, and the distribution of the minimum of the Y; becomes

Pr{U,.>a} =(01—-(n+Da)" a<l/n+1)

which is also a result of considerable age.
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There are also interesting relationships between the distributions of U, and
V. with the work of Robbins [12] and Votow [15] on the measure of a random
set.

By using (8.2) it would be easy %o find the distribution of V, — U, or V,./U,
and, as suggested by Kendall ([6], discussion), these might be better statistics
to- test for the equality of the Y; than the statistics W, discussed in Sections
5, 6, and 7 above.
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