SOME THEOREMS FOR PARTIALLY BALANCED DESIGNS

By W. S. Connor anp W. H. CLATWORTHY

National Bureau of Standards

Summary. This paper generalizes certain results which are known for balanced
incomplete block designs and group divisible designs to partially balanced in-
complete block (PBIB) designs with m associate classes. Some of the results
are for general m but others are for m = 2, 3, or 4.

-1. Introduction. Let N be the incidence matrix of a PBIB design with m
associate classes. Then the determinant | NN’ | may be written as

|NN'| = rk(r — 2)™ +-- (r — 2™, Zi:-lau':v—l, t = m,

where the 2’s are distinet, r — 2z,, (u = 1, ---, (), are factors of | NN’ |, and
., (u =1, -+, 1), are their respective multiplicities. For any m the factors,
and for m = 2, 3, and 4 the multiplicities, are expressed in terms of the parame-
ters of the design.

For m general it is observed for v > b that | NN’ | is zero, which implies that
one of the factors is zero, a slight modification of a condition of Nair [10]; and
for v = b that | NN’ | is an integral square, a generalization of Shrikhande’s
[11] and Chowla and Ryser’s [7] result for balanced incomplete block designs,
and of Bose and Connor’s result for group divisible designs [3].

The special case m = 2 is studied at length, with calculation of | NN’ | for
group divisible designs, which was first done in [3], triangular designs, and Latin
square designs with 7 constraints. Corollaries to the general theorems men-
tioned in the preceding paragraph are stated in detail, and several necessary
conditions for » even and odd are developed from consideration of the integral
nature of the o’s. These latter theorems are very useful in showing that certain
sets of parameters which satisfy the necessary conditions given by Bose and
Nair [4], and quoted in (2.2) below, do not correspond to constructible designs.

For general m, lower bounds are developed for b, a generalization of Fisher’s
work for balanced incomplete block designs [9], and of the bounds for group
divisible designs [3]. Also, it is shown for any m that the factors of | NN’ | are
nonnegative, which is obvious for balanced incomplete block designs and was
shown for group divisible designs in [3].

2. The definition of a PBIB design. A PBIB design with m associate classes
has been defined by Bose and Shimamoto [5] substantially as follows:

A PBIB design with m associate classes [m = 1] is an arrangement of v treat-
ments (varieties) in b blocks of k& experimental units (plots) each such that:

(i) Each of the » treatments is replicated r times, and no treatment appears
more than once in any block.
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(i1) There exists a relationship of association between every pair of the v
treatments satisfying the following conditions:

(a) Any two treatments are either first, second, « - - , or mth associates, and
any pair of treatments which are sth associates occur together in exactly A,
blocks (s = 1,2, - -+, m). .

(b) Each treatment has n, sth associates.

(¢) For any pair of treatments which are sth associates the number of treat-
ments which are simultaneously jth associates of the first and uth associates
of the second is p}, and this number is independent of the pair of treatments

with which we start. Furthermore pj, = p%; (7 # u; s, /,u = 1,2, --- , m).
It is known that the following conditions are satisfied by the parameters
v,b,r,k, )‘1’)‘2’ ))‘m)nlynﬁy 7n’m)p§'u) (87j7u = 1)2) y”l')y of the
design:
vr = bk,
v—1=2mn, rlk—1) =2 n\,
s=1 s=1
2.1) L
5"‘: i _Jni—=1 ifi=j
&y P n; if 4 5 j,
n"p;:‘“ = njp::u = n“pfu' (7/7.77u = 17 2) Tty m)'
If m = 2, then clearly
vr = bk,
v—1=n1+n2, r(k—1)=n1>\1+n2}\2,
2.2) ph+ pl + 1 = ph + ple = n1,

1 1 2 2
P+ P2 =P+ Prt+1=mn,
1 2 1 2
71 P12 = N P11 and Ny Pe2 = Ng Pia .

When m = 2, we shall require that Ay # Ae, for if \; = A, the design becomes a
balanced incomplete block design which we do not wish to consider.

3. The value of | NN’ | for the general case. Consider the incidence matrix
N of the general PBIB design, that is,

Ny Nz o+ Np
3.1) ‘ N =|na na -0 oyl
Nyr My Ny

where the rows represent treatments, the columns represent blocks, and n; = 1
or 0 according as the ¢th treatment (z = 1, 2, - -+, v) does or does not occur in
the jth block (j = 1,2, ---, b). Since every treatment is replicated r times,

4 (32) Z?—:l n%i =r ('L = 1) 2) Ct Yy ?)),
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and since every treatment must occur in A, blocks with each of its sth associates
(s =1,2,---,m),if treatments ¢ and u are sth associates, then

3.3) Z',’-,l NifMy; = Ns Gy, u=12---,0).

Hence the elements of the symmetzsic matrix NN’ are r in the principal diagonal
and A,’s elsewhere.

We now wish to evaluate | NN’ |. Since for a particular design r is fixed, and
in our context we wish to determine | NN’ | for all r, it is convenient to consider
the symmetric matrix M which is obtained from NN’ by replacing » with the
variable z. The determinant | M | may be regarded as a polynomial of the vth
degree in z. We shall determine the zeros of this polynomial and thereby the
factors of | M |. We observe that the ¢th row (and column) of M contains the
element z in the position of the main diagonal and by Section 2 the other » — 1
positions of each row (and column) are occupied by n; Ai’s, n2 A’s, - - -, and
m An’s. Hence if we add rows 2, 3, -- -, v to the first row of | M |, then the
elements of the first row are all

(3.4) 2+ 2o,
which we may factor out of the first row. Thus one zero of | M | is
(3.5) a= =2 min,

and therefore a factor of | M |isz — 2.
We next consider the problem of finding the zeros of | M | from a different

point of view. Let X be the column vector [2;, z2, ---, x,]. Then by a well
known theorem from algebra, for

(3.6) | M| =0,

it is necessary and sufficient that

3.7 MX =0

have a solution other than (0, 0, ---, 0). We shall seek the » linearly inde-

pendent nonnull solutions, to each of which there corresponds a zero of | M |.
Nair [10] and Bose [2] have shown when » > b that | A | = 0, where 4 is
defined by (3.12) and (3.14) below, and we shall parallel Bose’s argument. If

€1, z2, - -+, @,) is a nontrivial solution, then by adding the » equations in (3.7)
we get

(3.8) : (z — =) Z:’:—l z; = 0.

Hence for z # 2z,

(3.9) Diawm =0,

where z; corresponds to the treatment 7. The excluded solution is X, = [e, ¢,
.-+, ¢, where ¢ is arbitrary and X, corresponds to 2 .
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Let us denote by S,(z:) the sum of the variables of the sth associates of the
ith treatment. Then the » equations of (3.7) may be written as

(310) 200 + Z:';l >\a Ss(xi) = Oy (’i = 1: 2: ) 'I)).

Sum the equations (3.10) over the sth associates of the 7th treatment and use
the definition of a PBIB design and (3.9) to obtain

Mpa 4 Nepi2 + <o+ 4 AnPim — e} Si(x:)
+ [
(3.11) + {2 4+ Mpa 4+ Nepia 4 -0 A+ A Pim — M.} Sa(w:)
+ Pt 4 Nepiz 4 o0 4 AnDom — M Sulz) = 0

wheres = 1,2, -+, m.
Let us set

(3.12) Qo = MPa1 4 Nepaz + -+ 4 AnDem — AT, 8 # u,
and
O = 2 4+ M5t + Mooz + -0+ ADom — Nels .
Then the equations (3.11) are
anSi(x:) + aeSe(x:)) + -+ + am Sn(z:) =0
(3.13) o1 S1(x:) + anSe(x)) + -+ + aam Sw(xs)) =0

Gm1 Sl(xi) + ame S2(xi) + o 4 G Sm(xi) = 0.

Without loss of generality we can assume that z; # 0. Hence S,(z:), (s = 1, 2,
.-+, m), are not all zero, since we have z; + 2 S.(z;) = 0. This can happen
if and only if

a P Tim
(3.14) [A =] coveeenenns =0.
aml oo amm

From (3.10) it is clear that (3.14) is necessary and sufficient for a nonnull solu-
tion other:than X, of (3.7). Hence the

Lemma 3.1. The distinct zeros of | M | are 2, and the distinct zeros of | A |, so
that

(3.15) [ M| =(2—2)(@E—2)"(—2)" - (z2—2)"
where 21, 22, - -+, 2, (t £ m) are the distinct zeros of | A | of (3.14), and

(3.16) > e =0 —1, (o > 0).
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When z = r, the definition of a PBIB design (Section 2) is satisfied. Further,
M = NN’ and, by (2.1) and (3.5), 2 — 2 = rk. Paraphrasing Lemma 3.1, we
have the following theorem.

TureoREM 3.1. For a PBIB design with m assoctate classes,

(3.17) [NN'| = rk(r — 2)% (r — 2))** -+ (r — 2)%,
where 21, 25, -+ - , ¢ (1 £ m) are the distinct zeros of | A | of (3.14) and D 4i ay =
v — 1, where a, (u = 1,2, -+, 1) 18 a positive integer.

If the PBIB design is symmetrical, that is, v = b (or equivalently, r = k),
then

(3.18) |NN'| = N[,

which must be an integral square since all of the elements of N are integers.
Noting that 7k = r°, we obtain the following corollary.

CoROLLARY 3.1.1. For a symmetrical PBIB design with m associate classes, it
1s necessary that

(3.19) |[NN"| = 7*(r — 20)*(r — 2)°t -+« (r — 20)™

be an integral square.
If v > b (i.e., r < k), then as has been pointed out by Nair [10] and Bose [2],
| NN’ | = 0, so that by (3.17),

(3.20) rh(r — 20)*'(r — 2)** -+ (r — 2)™ = 0.

Since r £ 0 and k # 0, it is necessary that r be equal to one of 21, 2, *-+ , 2; .
Hence the following corollary to Theorem 3.1.
COROLLARY 3.1.2. For a PBIB design in which v > b, it is necessary that

| NN’ | = rk(r — 20)™(r — 25)* -+ (r — 2% =0,

so that r is equal to one of 21, 25, *++ , 2: .

In Sections 5 and 6, a1, @z, ---, a; will be determined as functions of 2,
22, " ,2 (t = m)form = 2,3, and 4. In the next section, for m general, we
shall develop lower bounds for b, and shall show that r — 2, (w = 1, -+, ¢)
is nonnegative.

4. Lower bounds for b and the nonnegativeness of the factors of | NN’ |. Lower
bounds for the number of blocks in group divisible designs were developed in
[3]. It was also shown for group divisible designs that the factors r — 2z, and
r — 2, of | NN’ | cannot be negative. In this section we shall extend these re-
sults to PBIB designs with m associate classes.

Since M is symmetric, there exists an orthogonal matrix C such that C"MC is
the diagonal matrix which has as elements the roots of the secular equation

(4.1) [M —yl]| =0,

where (" is the transpose of C' and I is the identity matrix of order v [8]. But the
roots of | M | = 0 are 20, 21, *** , 2, with multiplicities 1, a1, --+, @; respec-
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tively, so that the roots of (4.1) mustbeyo =2 — 20, 1 =2 — 21, ~** , Yys =
2 — z; with the same respective multiplicities.

Since C is nonsingular, M and C’MC have the same rank, a fact which is useful
in obtaining lower bounds for b. Thus, if z # 2z;, ({ = 0,1, 2, -+ -, t), then

4.2) Rank M = v,
butifz =2;,,(¢=0,1,2,---, ort), then
4.3) Rank M =v — a;.

Now for z = r, the definition of a PBIB design (Section 2) is satisfied, NN’ =
M, and it is clear that

(4.4) b = Rank N = Rank NN’ = Rank M.
Ifrsz (w=12 ---,1), then from (4.2) and (4.4) we obtain
(4.5) b=u,

andifr = 2,, (u =1,2, ---, or t), then we obtain

(4.6) bzv— a,.

We summarize in the following theorem.

TuarorEM 4.1. For a PBIB design with m associate classes, if 1 # z,, (u =
1,2,--+,t),thenb 2 v, butifr =2z,, (u=1,2,---,0rt),thenb = v — a,.

If the design is resolvable (i.e., consists of r sets of b/r blocks each, b/r an
integer, where a set of blocks contains every treatment once each), then these
inequalities may be improved. In this case the columns of N may be arranged in
r sets of b/r columns each, where a set of columns is such that 1 occurs once and
only once in each row of the set. By adding the second, third, --- , and (b/r)th
columus to the first column of a set we obtain a column with all 1’s. Since there
are r sets, it is clear that

4.7) b— (r—1) = Rank N.

Using (4.7) with (4.2), we obtain

(4.8) bzv+r—1,

when r # 2, (u = 1,2, --- , ), and (4.7) with (4.3) we obtain
@9 b2v—autr—1,

when r = 2, . We summarize these results in the following theorem.

TrEOREM 4.2. For a resolvable PBIB design with m associate classes, if r # 2.,
(w=1,2,---,8),thenbzov+r+Lbuifr=2.,u=12---,0rt), then
bzv—oa,+r—1

We next show that r — z,, (w = 1, 2, ---, ), is nonnegative. Let z = r,

~ so that NN’ = M, and suppose that N exists satisfying the definition of a
PBIB design. Since M = NN’ is nonnegative, and since the transformation
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matrix C does not alter this property, the roots of (4.1) are nonnegative. We
have proved the following theorem.

TaEOREM 4.3. For a PBIB design with m associate classes, r = z,, (u = 1, 2,
ceey t)’ .

5. Partially balanced designs with two associate classes. In this section we shall

treat partially balanced designs with two associate classes (m = 2). From

(3.12) and (3.14) it is seen that

1) |4 = 2+ Mph + APl — M Mph + }\217%2 - MM 0
NP3+ NeDie — Aa7ig 2+ )\1P§1 + NePiz — Aa7ig

By use of (2.2) we may express | 4 | in terms of z, A1, As, P12 and pls . After
adding the second row of determinant | A | to the first row, expanding, and
collecting terms according to powers of z, we obtain

[A] =2+ [(n — M)@R — phk) — M+ M)]e

(5.2) L 2
4+ [(A1 — A)(eprz — Mpk2) + MAg] = 0.
If we let
(5.3) = ph — Pk, 8= ph+ Pk
and

A=~"4+28+1,
then the roots of (5.2) are
(5.4) o =3 — M) (=7 + (=)"VA + M+ M), @ =1,2).

We observe that
(a) A > 0so that z; & 2, and
(b) 2 < 2ifAN>N= 0, butz; > 2 if0 S M < A2
By (a),t = m = 2in (3.17).
Let us next determine the exponents, oy and ap, of (3.17) in terms of the
roots, z1and z;,of | A| = 0. When m = 2,

(5.5) [ M| =(— 2)(z —2)""( — )™,
where _
(5.6) a+ta=v—1

Expanding the factors of | M | and collecting the coefficients of the powers of z,
we obtain from (5.5),

(B7) M| =2 — (a4 a + )2’ + -+ + (—20)(—2)" (=)™

Again, expanding | M | by its diagonal elements [1], we see that the coefficient
of 2" is zero. Hence from (5.7)

(58) 2101 + 20y = —2p.
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Solving (5.6) and (5.8) simultaneously and using (5.4), we obtain
a1 = vz + (20 — 2)]/(22 — 21)

(5.9 _
: =[@— 1)(=vy+ VAa+1) — 2n]/2VA
and
ay = [1)21 + (20 - 21)]/(21 - 22)
(5.10)

= [0 — )(y + VA + 1) — 2n,)/2/A.

When z = r, the definition of a PBIB design is satisfied and M = NN’. We
thus have the following theorem which is a special case of Theorem 3.1.
TaEOREM 5.1. For a PBIB design with two associate classes, it is necessary that

(5.11) [NN'| = rk(r — 2)%(r — 2)™, araw =0 — 1,

where z; and 2z, are given by (5.4), and a; and ay are given by (5.9) and (5.10).
Furthermore, z1 and z, are distinet and oy and ay are positive iniegers.

The positive integral condition on oy and ay (@; + a2 = » — 1) is useful in
showing that some sets of parameters which satisfy the necessary conditions
(2.2) have no solutions. From (5.9) and (5.10) it is seen that «; and o, depend
only upon the parameters n,, ns, piz, and pi; of the design. Useful computa-
tional formulas for «; and a, are provided by (5.9) and (5.10).

We now have a special case of Corollary 3.1.1.

CoroLLARY 5.1.1. For a symmetrical PBIB design with two associate classes,
1t s necessary that

(512) INN' I = '1'2(1‘ - 21)‘"(7‘ - 22)”, a+ o =0 — 1,

be an integral square.

When v > b, r = 2z,, (u = 1 or 2), so that by (5.4), A is an integral square.
Hence we have a special case of Corollary 3.1.2.

CoROLLARY 5.1.2. For a PBIB design with two associate classes and v > b,
it 18 necessary that

(a) | NN'| = rk(r — 21)"'(r — 2)** = 0,
80 that either r = z1,0rr = 22, and
(b) A be an integral square.

We shall next prove corollaries for three special types of partially balanced
designs with two associate classes. The first and perhaps most important of
these types is known as the group divisible design which has been rather fully
developed by Bose and Shimamoto [5], Bose and Connor (3], and Bose, Shrik-
hande, and Bhattacharya [6]. For these designs

v = mn, nm=mn—1, ny = n(m — 1),
' (5.13) (n — DA + nlm — DAe = 7k — 1),
p}2=0, p2u=n—1,
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where m and n are positive integers not less than 2. By (5.4), (5.9), and (5.10)
(514) 21 = —n()\l bl )\2) + M s 22 =M
(5.15) ag=m—1, ,and ay = m(n — 1),

so that we have the following corollary.
CoROLLARY 5.1.3. For a group divisible design it is necessary that

(5.16) |NN'| = rklr — M+ n(n — M)]™7r — M]™"0

This result was obtained by Bose and Connor [3].
The second type of partially balanced design developed in [5] is known as the

triangular design. For the triangular design

v = n(n - 1)/2) m = 2(n - 2)) Ng = (n - 2)(” - 3)/27
(5.17) . .
pe=n—3, pr=2n—4),

where n is integral and greater than or equal to 4. From (5.4), (5.9), and (5.10)
it is seen that

(518) 1 = (4 - n))\l + (n - 3))\2 y 29 = 2\ — Ag y

(5.19) a=n—1, and a; = n(n — 3)/2,

so that we have the following corollary.
COROLLARY 5.1.4. For a triangular design it is necessary that

(5.20) | NN’ | = rkr 4+ (n — 9\ — (n — 3)M]"[r — 20 + Ng]* " 0%
A third type of partially balanced design with two associate classes defined
in [5] is the Latin square type with ¢ constraints. For this type of design
v = n’, n = i(n — 1), ng=m-—1)n—1+ 1),
pl= (G — 1)(n — i+ 1), ph = i(n — 1),
where n and ¢ are integers and 2 < ¢ < n. Again, from (5.4), (5.9), and (5.10)
we obtain

(5.22) 21 = (’l —_ n)()\l bl )\2) + >\2 ) 2 = "()\1 - >\2) + >‘2 ’
(5.23) a = i(n — 1), and o= (n— 1)n —17+ 1),

from which we have the following corollary.
COROLLARY 5.1.5. For the Latin Square type of design with ¢ constraints, it is
necessary that

(5.21)

|NN'| = rk[r — (¢ — n)(\s — o) — VRGeS
[r — 2\ — X)) — )\2]("—1)(%—1'4-1).
Next let us consider the special case of a PBIB design with two associate

classes in which a; = a; . Setting the right members of (5.9) and (5.10) equal to
each other and recalling that v — 1 = n; + 7., we obtain

(5.25) v = (2 — n)/(m + na).

(5.24)
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Since n; and n, must both be positive integers it follows that
(5.26) —1 < —ny/(m+m2) <7 = (M2 — m)/(n1 + n2) < Ma/(m1 + ma) <1,
from which it follows that

«

(5.27) ¥y =0, or Pl = piz ,
since ¥ must also be an integer. Hence, by (5.25), and (2.2),
(5.28) m=mn=@w—1))/2.

Again, using (2.2) and (5.28) it is seen that v is of the form 4¢ + 1, where ¢ =
pla = Pl = ph.Since s = azand @y + o = v — 1,

(5.29) o= = (@—1)/2 =2t
From (5.3), (5.27), and (5.29)
(5.30) A=op=4t+1.

This completes the proof of the following theorem.
TueoreM 5.2. If in a PBIB design with two assoctate classes ay = az , then

(a) Pl = P = 4,

(b) a=a=mn=mn=@0—1)/2 =2,
and

(c) v=A=4+1,

where ¢ is a nonnegative integer defined by (a).

It is known that any integral square must be of the form 4p or4p + 1, p a
nonnegative integer. However, oy = o, does not imply that A is an integral
square. In fact, designs having solutions exist with a; = @z and A not an integral
square while others having a; = a, and A an integral square also have solutions.

Let us next consider a partially balanced design with two associate classes in
which v is odd and A is not an integral square. Let  be defined by

(531) 7 =[— DA -7 — 2ml/2VA
Whether v is odd or even (5.9) may be expressed in the form
(532) o= (v —1)/2 + 1.

Since v is odd, (v — 1)/2 is integral, and, since a; must also be integral, » must
be integral. Since A is not an integral square, the only way 5 can be integral is
for n to be equal to zero, that is,

(5.33) w—1DA -9 —2n =0.

Usingv — 1 = m; + n, in (5.33) it is seen that (5.25), (5.26), (5.27), (5.28), and
(5.29) follow. Hence the following theorem.
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Tureorem 5.3. If in a PBIB design with two assoctate classes v is odd and A is
not an integral square, then it s necessary that

(a) Piz = ’D%o = 1’31 =,

) ="M =ar=a = v—1)/2 =2
and

(c) v=A=4t+4+1,

where ¢ is a nonnegative integer defined by (a).

Now if » is odd and A is an integral square (5.32) holds and » must be an in-
teger. Thus, we have the following theorem.

TueoreM 5.4. If in a PBIB design with two associate classes v is odd and A is
an integral square, then it 1s necessary that n be an mteger, where A 1s defined by
(5.3) and n s defined by (5.31).

Finally let us consider the case of a PBIB design with two associate classes in
which » is even. Then (5.9) can be written in the form
(5.34) ap = 3o — 14+ 29
Since a; must be integral, v — 1 4+ 25 must be an even integer. But » — 1 is
odd, and so 27 must be an odd integer. Since v, v, and n; must all be integral,
it is seen from (5.31) that A must be an integral square. This proves the follow-
ing theorem.

TueoreM 5.5. If in a PBIB design with two associate classes v ts even, then it is
necessary that

(a) A be an integral square, and
(b) 29 be an odd (positive or negative) integer,
where A and n are defined by (5.3) and (5.31) respectively.

6. Partially balanced designs with three and four associate classes. In this
section we shall obtain expressions for a1, @z, *++ , a;, ({ = 3, 4), in terms of
the roots zy,22, -+ ,2. 0of |A| = 0 when the z;, ( = 1, 2, --- | t), are all
different. First, we shall discuss the case of partially balanced designs with three
associate classes (m = 3).

When m = 3 we obtain from Lemma 3.1

(6.1) [ M| =(2— 2)z— 2)"(z — 25)"(z — 25)*°
wherein the z;, ( = 1, 2, 3), are the distinct zeros of | 4 | and
(6.2) ; Qlimai=0v—1, (&> 0).

Expanding each factor of | M | of (6.1) and collecting coefficients of powers of z
gives

3
| M | =z”+|:— zo—Zaizi:Iz”_l
1==1
3 3
(6'3) + [ZO E [ 224 + %Z ai(“t l)zt + Z 0% z]:l -
” =1 =1

i,j=1

<J
4 oo (=) 20212025 .
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Again, expanding | M | of (6.1) by its diagonal elements [1], it is seen that
3
(6.4) |M|=z”—§(zln¢)\3)z"_2+"'+|Mo|

where M, is obtained from M by re})lacing 2 by zero.
Equating the coefficients of 2°™ in (6.3) and (6.4), we obtain

3
(6.5) Zl aizi = —2,
while equating the coefficients of 2" gives
3

3 3 3
(66) 2230 Zl [+ 2% 7 + Z a;(a.' - l)zf + 2 Z A;QjRi25 = —0 Z n,)\f .
i= =l .

iyd=1 i=1
1<)
Now
3 2 3 3
(6.7) (Z a.'&') =2 aidi +2 2 aiajziz;.
=1 1=l 3,5=1
<
By use of (6.5), (6.6), and (6.7) we obtain
3 3
(6.8) Dzt = —z + v mN.
[y t=1

Thus (6.2), (6.5), and (6.8) comprise a system of three nonhomogeneous linear
equations in unknowns a1 , az, and a3,

a+ e+ w=h
(6.9) 2101 + ze0n + a3 = ke
2§a1 + Zgaz + z§a3 = ka )

wherein the coefficient matrix is the Vandermonde matrix

1 1 1
(6.10) Az =2z 2 2],
A %z
whose determinant is
(6.11) : | As] = (22 — 2)(za — 21)(23 — 22),

and
(6.12) khh=v—1, ke = —2), ks = —zb + v tandi.

If 21, 22, and 2z; are all distinct, then (6.9) has a unique solution. In fact, we
obtain

(6;13) v I:z‘ 2 + g n%’)‘%:l — (20 — 22)(20 — 2)

(22 — 21) (25 — 21)

ay = ’
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and from (6.9) it is clear that the corresponding expressions for o, and o3 can
be obtained from (6.13) by cyclically permuting the indices 1, 2, and 3.
For partially balanced designs with four associate classes the above procedure
leads to
4 4 * 4 4 4
a; II (i — 2)) = v[H z + (Z ze)(z nN-) - K] + 11 (a0 — 20,
6.14) 25 i o T i
j = 1) 2, 37 4’

where
4 4 . .
K=—%2 n 2 phd,
=1 J k=1

.

0 N N
Ap={N 0 N,
N M O
and 2, 22, 23, and 2z, are the distinct roots of | A | = 0.
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