SOME THEOREMS RELEVANT TO LIFE TESTING FROM AN
EXPONENTIAL DISTRIBUTION!

By B. EprsrEIN AND M. SoBEL?
Wayne University

1. Introduction and Summary. A life test on N items is considered in which the
common underlying distribution of the length of life of a single item is given by
the density

‘ 1 e forz = 4
(1) p(z; 6, A) = 0
0, . otherwise

where 6 > 0 is unknown but is the same for all items and A = 0. Several lemmas
are given concerning the first » out of » observations when the underlying p.d.f.
is given by (1). These results are then used to estimate § when the N items are
divided into k sets S; (each containing n; > 0 items, D s17; = N) and each
set S; is observed only until the first r; failures occur (0 < r; < n;). The con-
stants r; and n; are fixed and preassigned. Three different cases are considered:

1. The n; items in each set S; have a common known 4; (j = 1,2, --- , k).

2. All N items have a common unknown A.

3. The n; items in each set S; have a common unknown 4; (j = 1,2, --- | k).
The results for these three cases are such that the results for any intermediate
situation (i.e. some 4 ; values known, the others unknown) can be written down
at will. The particular case k¥ = 1 and A = 0 is treated in [2].

The constant A in (1) can be interpreted in two different ways:

(i) 4 is the minimum life, that is life is measured from the beginning of time,
which is taken as zero.

(ii) A4 is the “time of birth’”’, that is life is measured from time 4. Under in-
terpretation (ii) the parameter 6, which we are trying to estimate, represents
the expected length of life.

2. Statement of results. Three lemmas are given concerning the smallest r-
ordered observations out of n independent observations on the common dis-
tribution (1). Although they are called lemmas because of their relation to the
problem at hand, they are of interest in themselves.

A uniformly minimum variance unbiased estimate 67 of 8 together with its
distribution is given for each case ¢ = 1, 2, 3. This estimate is the unique un-
biased estimate based on a sufficient statistic. In each case 7 ( = 1, 2, 3) it is
given by 67 = C.f;, where C; is a constant and é; is the maximum likelihood
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374 B. EPSTEIN AND M. SOBEL

(m.l.) estimate, given in (13), (14), and (17) below. If R = D 5, r; is the total
number of failures observed, then it is shown that 2Ré,/6 is distributed as x*
with 2R, 2(R — 1), and 2(R — k) degrees of freedom in cases 1, 2, and 3, re-
spectively. .

In each case the estimate 67 (or 6;) depends on the k-tuples (ry, 72, -+ , 7%)
and (ny, na2, --- , %) and in case 1 on the known 4 values. But it is shown that
the distribution of the estimate depends only on R, 8 (and in case 3 also on k)
and is otherwise independent of the k-tuple (ri, r2, --- , 7). The distribution
is independent also of the k-tuple (n;, ne, -+ , mi), of N, and in case 1 of the
known A values. Clearly this means that there are many ways of dividing the
N items into k sets and of taking a total of R observations, all of which give
equivalent estimates of 6. This equivalence is not with respect to the time re-
quired to obtain the estimate, but with respect to any properties depending on
the distribution of the estimate.

3. Derivation of results in Section 2. Let X; < X, < -+ = X, denote the
r smallest ordered observations from a set of n independent observations on the
common distribution (1). In life testing, X, the 7th smallest failure, is also the
1th observation taken so that a sample like the above is obtained by merely
stopping the experiment immediately after the rth observation. The set of n
random variables under discussion represents a typical set S; described above
with the subscript 7 dropped. The joint p.d.f. of X;, X, --- , X, is

nl A (mn -]
(n—r)ler

forAd S Ss, - L2, < o

=

2 p@1, z2, - 2,30, A) =

0, otherwise.

Unless explicitly stated otherwise, any set X;, X., --- , X, of the first r of n
observations considered below will have density (2).

We now state a series of preliminary lemmas and corollaries.

Most proofs are direct and hence omitted.

LeEMMA 1. For 1 £ s < r £ n, the conditional joint density of

(3) Yi=Xi+l—Xs, i:s,s—l—l’.‘.’lr._l

gwen X, = z, (as well as the unconditional joint density) is (2) with (n, r, A) re-
placed by (n — s, r — s, 0) respectively.

LeMMmA 2. For 1 £ r £ n and for any preassigned constant ¢ = A the conditional
joint density of the set

(4) X?:Xi—'c (1::1’2’...’7-)
given that X1 = ¢, is (2) with A replaced by zero.

COROLLARY_I. IJ ¢ is replaced by a random variable C, independent of the X, ,
whose range is the interval [A, |, then the conditional joint density of X7 given

that X, = C is the same as in Lemma 2.



LIFE TESTING 375

LeMMA 3. For 1 £ r £ n the set of random variables

(5) W,=(n—z+1)(Xz—Xz_1) 1:=1,2,"',7'
(where X, s defined as the constant A) are mutually independent with common
p.d.f. (1) except that A = 0. !

Proor. Utilizing the fact that forr = 1,2, --- | n
(6) LX)+ - -4 =2 W

the result is immediate if the transformation (5) is carried out in (2).
CoroLLARY 2. For 1 < r < nif

@) V=2 K= A) + (- A = 4)

then 2V /8 is distributed as x*(2r).

Proor. By Lemma 3 and (6), V is a sum of r independent, identically dis-
tributed exponential variables W; . Since 2W /6 is a x*(2) for each ¢, the corol-
lary follows.

CoroLLARY 3. For 1 < r < n, if

® V=2 (K- XD+ (o= A, - XD,

ihen the conditional distribution of 2V'/0 given X, = x, (as well as the unconditional
distribution) is x*@r — 2). The random variables V' and X, are independent.
Proor. The “unconditional” result follows from the fact that

(9) V' = 5__‘; Wi.

By Lemma 3 each of Wy, W3, - .- , W, is independent of W; and hence of X;

and the corollary follows.
CoROLLARY 4. For 1 = r = n and any preassigned constant ¢ = A, if

(10) =3 = 9+ = D, — 9,

then the conditional distribution of 2V*/6 given X, = ¢ (as well as the unconditional
distribution) is x"(2r).

Proor. By Lemma 2 the conditional joint density of X; = X; — ¢ given
X1 2 c is the same as the joint density of X; — A (i = 1,2, ---, r). Hence
the conditional distribution of V* must be the same as the distribution of V,
namely x°(2r). Since the result is independent of ¢ it is also the unconditional
distribution.

CoRrOLLARY 5. If ¢ is replaced by a random variable C, independent of the X, ,
whose range 1s the interval [A, «] then again the conditional distribution of 2V*/6
given X1 = C is x*(2r). The random variables V* and C are independent.
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TrEOREM 1. The distribution of 8, the m.l. estimate, depends only on R, 6 (and
in case 3 also on k). The random variable 2RO/6 is distributed as x'(2R),
X' 2R — 2) and x’(2R — 2k) in cases 1, 2, and 3 respectively.

Proor. In case 1 the joint p.d.f. of the R observed z’s is

(11) B2l fArS XaS - SXiy < w,0=1,-,k
otherwise
where B is independent of 6 and
(1) V= X u—A) + (= )Xy = A, G= L2k
The m.l. estimate 6; of 6 is easily shown to be
k
=

From Corollary 2 and the independence of the V;, it follows that 2R6,/6 =
%12V /6 is distributed as x*(2R).
In case 2 it can be readily verified that

k

(14) by = Zl V¥/R
o
where
(15) VE= 2 (X = &) + (s — ) (X — D)

and 4 is the smallest of the R observed X’s. Let S; denote the set containing
A. By Corollary 3 the distribution of 2V3/0 is x*(2r;, — 2) where x*(0) is to
be interpreted as the sure constant zero. For any other set S; (j # ) it follows
from Corollary 5 that the distribution of 2V7F/6 is x*(2r;) and is independent of
A. All the random variables V; are independent and hence

k
(16) 2R6:/0 = Zl 2V* /o
J=

is distributed as x*(2R — 2). Since V3, is also independent of A by Corollary
3 it follows that 6, and A are independent.
In case 3 one easily computes

() b= 3 VIR

J=1

where

18 V= g (X = Xp) + (5 = )X, — Xp) (G =1,2---, k).
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By Corollary 3 the distribution of 2V;/6 is x*(2r; — 2) for each j (where x*(0)
is to be interpreted as the sure constant zero). Hence

k
(19) 2R;/6 = Zl 2V;/0
L] =

is distributed as x’(2R — 2k). In this case one needs R > k observations to
obtain an estimate of 6 or, since r; = 1 for all j, one needs r; > 1 for at least
one j. This completes the proof of Theorem 1.

Define

k T k
(20) Ty =), [2 X + (n; + rj)Xjr,] = Rby + 2 njA;.

j=1 |_i=1 Je=1

(21) Ty = (T, Tn) where Ty =T, and Tun = min X;.
J

(22) Ts = (Ta, Ts1, -+, Tar) where Ty = T: and Ti = X;

for j=1,2 -,k
The unbiased estimates 6} for cases 1, 2, and 3 respectively are given by
(23) 0F = 6,08 = R&/(R — 1) and 65 = Rb/(R — k).

It can be quickly verified that 67 depends on the observations only through
T; ¢ = 1,2, 3). Hence, to show that 67 are uniformly minimum variance un-
biased estimates it suffices [3] to show that T; is complete and sufficient for
estimating 8 in each case ¢ ( = 1, 2, 3). The proof for case 3 is similar to that
for case 2 and is omitted. To prove completeness we will need the following
uniqueness theorem for one-sided Laplace transforms (see [1] and [3]): “If

(24) [ e ae =0 forall g > 0
0

then f(¢) = 0 for almost all ¢ > 0.”

Taeorem 2. T, 1s sufficient and complete for estimating 6.

Proor. The sufficiency follows from the fact that the joint density in case 1
can be written as

(25) COFexp [—(Tl - ];kln,-A])/oil jI:Ilfj(le, Xjo, ooy Xins3 Ai)

where C is c;)nstant, and foreachj (j = 1,2, --- , k)

26) e ,X,-,f;AJ-)={1 HA; S XpS -  SXpy <
0 otherwise.

If we let A* = D 5_in;A; then (since X;; = A; for each 7 and j) Th = A4*.

%S:tggof(t) denote the density of 7. To prove completeness it has to be shown
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(27) f w f@®ps(t) dt = 0 forallg > 6

then f(t) = 0 for almost all £ > A*. Letting t; = t — A* and
FHt) =" + A%)

and using the result of Theorem 1 that 2t,/6 is distributed as x*(2R), then (27)
takes the form

(28) [ ey = 0 forall6 > 0. .
Yo

It follows from the uniqueness theorem for one-sided Laplace transforms that
f*(t) = 0 for almost all ¢; > 0. Hence f(¢) = f(t + A*) 0 for almost all
t > A*. This proves that T, is complete.

COROLLARY 6. 0 = 6, = (T, — A*)/R is the unique uniformity minimum
variance unbiased estimate of 6.

Proor. This is a direct consequence of Theorem 2 and the theorem on page
321 of [3].

TaeoreM 3. T: = (T'y, Tx) s suﬁicient and complete for estimating the pair
(6, 4).

Proovr. The sufficiency follows from the fact that the joint density in case 2
can be written as

k
(29) Cg—R 6—(T20—NA)/of(T?ly A) II]. fj(Xfly Xﬂ) Tty Xf"i; T21)°
]=x
Here C is constant,
_J1 if Ty = A
80) ST, 4) _{O otherwise,

and the f; are defined in (26).
To show that 7' is complete it has to be shown that if

31) f f Fltao, ) o altw, to) dlsodtm = 0 foralld > Oandall 4 = 0
4 JINig

then f(t», tn) = 0 almost everywhere in the region fn > 0, tn > Nin . Let
u = tp — Nty and { = ty . By Theorem 1 we have that 2u/6 is distributed as
x’(2R — 2) and isindependent of ¢. Moreover,since ¢ = min;,; X;;, 2N(t — A)/8
is distributed as x’(2) by Lemma 3. Then (31), after some cancellation, takes the
form

(32) [ f e AN B2 f 4+ Nt £) dudt = 0, forallg > Oandall A = 0.
A 0

It thus follows directly from a two-dimensional uniqueness theorem for Laplace
tfansforms that

(33) Fta , tn) = fu + Nt, £) = 0, forall 8 > 0and A 2 0,
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almost everywhere in the region ¢, > 0, to > Nty . Thus completeness of T’ is
established.

COROLLARY 7. 65 = Rby/(R — 1) = (Tw — NTu)/(R — 1) 1is the unique
uniformly minimum variance unbiased estimate of 6.

Proor. Unbiasedness of 65 is easy to verify. The assertion is a consequence of
Theorem 3 and the theorem in [3] cited in Corollary 6.

4. Confidence intervals on 6 and A in case 2. Since 2(Ty — NT21)/0 is dis-
tributed as x*(2R — 2), it is clear that confidence intervals on 6 which do not
involve 4 can be found. The following result concerning A is a corollary of

Theorem 3.
COROLLARY 8. A unique uniformly minimum variance unbiased estimate of A in

Case 2 based on (Ty , Ta1) is given by
(34) A* = Ty —

Proor. It is readily verified that A* has expectation A. Hence from the com-
pleteness of the sufficient pair (T2 , T'21) it follows as before that A* is the unique
uniformly minimum variance unbiased estimate of A. The minimum variance is
oa» = RO/N*(R — 1).

To get confidence limits which do not involve 6, let us introduce the random
variable U, where

(35) L’r = N(Tzl - A)/(Tgo - NTzl).

Since the numerator and denominator are independent by Theorem 1, it is
readily shown that the p.d.f. of U is given by

(36) fw) = ® — /(1 + w)F, 0<u< o,

Since f(u) is independent of 8, for confidence coefficient a we solve the equation
¢ 1

or

(38) c=a MY

Thus conﬁdence limits on A are
(39) ta — c(to — NTxn)/N < A < ta.

These limits do not involve 8 and are shortest in length for a given confidence
in the class of confidence intervals based on U. The latter property is established
by first noting from (35) that all possible confidence intervals on A are obtained
by equating the probability in some interval of U values, say (ci, ¢2), to 1 — e
.The confidence interval then takes the form

(40) tn — Coftw — Nta)/N < A < tn — c1(to — Ntu)/N.
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To minimize its length it suffices to minimize ¢, — ¢; (i.e. to find the shortest
interval of U values containing probability 1— «). Since the density (36) is
strictly decreasing it is evident that the minimum is obtained by taking ¢; = 0.

b. Related results. We now indicate some connections between the results in
Lemmas 1, 2, and 3 and some recent work [4] on ordered observations on a uni-
formly distributed random variable. It is easy to show that if Y is uniformly
distributed on the interval [0, B] then

(41) X =4~ 0log (Y/B)

has the exponential distribution (1). It follows from the monotonicity of the
log that an initial ordered set of r out of n exponential random variables corre-
sponds to a terminal ordered set of 7 out of » uniform random variables. S.
Malmquist [4] has pointed out that by virtue of the transformation (41), in-
dependence in Lemma 3 implies and is implied by a corresponding result for
rectangularly distributed variables. By using the transformation (41) one could
prove (this is not done in [4]) analogues of Lemmas 1 and 2 for the rectangular
case. Specifically let ¥, be the »th largest among » independent observations on
the uniformly distributed random variable Y, then
(i) the random variables

42) Z, =Y, /Y, v=gs+1 ---,r—1;15s<r=n

are jointly distributed like the r — s largest (ordered) observations out of a set
of n — s independent uniform random variables on the unit interval [0, 1].
(ii) for any preassigned constant ¢ < B the conditional random variables

(43) Zy = Y,/c v=12---,11=Sr<n

given Y, < ¢ are jointly distributed like the r largest (ordered) observations
out of a set of n independent uniform random variables on the unit interval
[0, 1].

Alternatively, if these results are shown independently they furnish another
proof of the lemmas.

6. Conclusion and an application. In this paper we have given a number of
results which are useful in making estimates of 6 based on life test information
from one or more sets of data, where the underlying probability law is the two-
parameter exponential distribution (1). If (1) is the underlying p.d.f., then
1 _x— A;

log - P dy = o

where P(z; 0, A;) = Pr {X =< z; 0, A;}. Thus it is clear that cases 1, 2, and 3
are equivalent to assuming that the theoretical life distributions in the various
sets S; will plot either as parallel straight lines or as the same straight line on
the semi-logarithmic scale suggested by (44). The results of this paper serve to
give a procedure for estimating the slope (common slope) of the line (lines). 4;
can be interpreted as the sensitivity limit at the appropriate stress level.

(44)
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