LEAST-SQUARES ESTIMATES USING ORDERED OBSERVATIONS

By F. DownrToN
Universgty of Liverpool

1. Introduction and summary. The purpose of this paper is to compare for
various two-parameter distributions, of the form f{(x — u)/c}/s, the estimates
of the parameters obtained by applying the method of least squares to the
observations, after these have been arranged in order of magnitude. Estimates
obtained by this process we shall call “ordered least-squares estimates.”” Such
estimates are unbiased and have minimal variance among all unbiased esti-
mates which are linear in the ordered observations.

This estimation process has been previously discussed by Godwin [1] and
[2] and Lloyd [3]. In the present paper, ordered estimates are obtained explicitly
for a class of two-parameter distributions having the above form. This class
contains the rectangular and the right triangular distributions as special cases.
It also reduces to the exponential distribution as a limiting case. Other special
cases of this class of distributions have also been previously discussed by
Craig [4].

Further, a general property of ordered least-squares estimates of the parameter
A in distributions of the type f(z/\)/A is discussed. As a result it is shown that the
ordered least-squares estimate of the scale parameter in the Pearson Type III
distribution is identical with the maximum likelihood estimate.

2. Notation and general theory. Let z,, x5, 23, + - - ©, be a sample of n inde-
pendent observations on a continuous variate X whose distribution has the
form f{(x — u)/0}/oc. We may write

Ty < 2o <z < Tw

for the ordered observations.

Let ¥, = (®, — w)/o and Yy = (@ — w)/o be the reduced observations,
unordered and ordered, respectively.

For s = 1’ 2, 3; e, let & (y(r)) = Oy COV(ZI(r) ’ y(s)) = Up -

Let a denote the (n X 1) vector of the o, ; v the symmetric, positive-definite
(n X n) matrix of the v, ; 1 an (n X 1) vector of 1’s; x the (n X 1) vector of the
Z ; and y the (n X 1) vector of the 7, . The inverse of v is v_* with ele-
ments v:: .o

The ordered least-squares estimates of u and ¢ are then

2.1) i = avial — 1a')v~lx/A
(2.2) = 1v'(la’ — al)v'x/A
where
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304 F. DOWNTON

(2.3) A = (v 1) (av'a) — (1v ")’
Also

(2.4) var (i) = a’v'ac’/A
(2.5) var (3) = 1'v'14%/A
(2.6) cov (4, 8) = 1'v'ac’/A.

These results were given by Lloyd [3].

3. Two-parameter distribution with explicit ordered least-squares solution.
We introduce the generalized geometric variate X whose density function is

{ p T — pu »—1
B.1) f(x) —{317’(7—*-”) ’ p—ac 2z <p—(a— b,
(0, otherwise,

where p = 1,and a = Vp(p + 2) and b = V/(p + 1)3/p.
The expectation and variance of X are

&(X) = u, var (X) = o".

It will be shown that for all p = 1 it is possible to find explicitly the expecta-~
tion vector and the variance matrix of the reduced ordered observations, and

hence the ordered least-squares estimates of 4 and o.
The standardised form of the variate X is Y = (X — u)/e, for which

8(Y) = 0, var (Y) = 1.
The density function of ¥ will be

(pb~*(y + a)"™, —asy<b-a
3.2) fy) = .
0, otherwise.
In order to apply the results of Section 2 it is convenient to define the variate
3.3) T=X+a)/b= (X —pu-+ as)/b.
Its density function is
", 0=st<1
@) = .
0, otherwise.
Its distribution function is
0, 1 <0,
(3.4) F@t) =41, 0=5t<1],

1, 1<t
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Its expectation and variance are, respectively,
3.5) &(T) = a/b = p/(p + 1)
var (T) = 1/b" = p/(p + 2)(p + 1)".
For the vector T of ordered values of T, let
&(T) = a, var (T) = w.

To obtain the relationship between these quantities and the expectation and
variance of the vector of reduced ordered observations y, we note that since
(3.3) gives T as a monotonic increasing function of Y, it follows that

(3.6) y = bt — al

where t is the vector of ordered observations on 7'. Taking expectations and
variances,

a=>ba—al, v=D>0bw.

In terms of p we then have

3.7 a=(+ 1)Vt 2)/p{a—pl/lp+ 1)}
(38) vi=pw'/(p +2)(p + 1).

We now turn to the explicit calculation of these vectors and matrices. The
rth element of a is

a0 = (P + D/EOT — r+ D} [ AFQI™(1 — O 10) ds

where () and F(¢) are defined in (3.4). This reduces to
3.9 8y = nTRTH (L 1))

wheren® =n(n—1) -+ (n —s+1)and (np + 1D = mp + ([0 — 1]p + 1)
co+ ([n — s + 1]p + 1). Similarly if w,, is the (r, s) element of w,

(3.10) W = {0 (pn 4 2)"H} — al

and forr < s

@11 we = wa = (0P (pn + 2)" P pls — 1 + D) — a,.
If wy, is the (r, s) element of a matrix w™", where

(3.12) wry =0 when |7 — s| > 1,

3.13) Wi = Wil = — (@[ — 1] + D(pn + 2)7*/p" 7 HpH,

B.14) wi' = (#@F — 2r + 1) + 2p(@r — 1) + Lj(pn + 2)"
/p'l—’f+ln(n—r+1)
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—1

it may be shown by multiplication that ww™ = 1° the unit matrix and hence

w ' is the unique inverse of w.
We now evaluate various quantities needed for computing the estimates;

we have .

(3.15) a'w'a = pn (pn + 2)

(3.16) a'w Ll = 1'w'a = (pn + 1)(pn + 2)

3.17) 1wl = (p— 1)S + (pn + 1)(pn + 2) + 2(pn + 2)/nlp™

where

(3.18) (pn + 2)/(p — 2) — 2(pn + 2)™ /ntp", for p = 2
S = 1 .
(3.19) (n+ 1) Zl forp = 2.

We now convert these expressions into the form in which they are used in
Section 2, using equations (3.7) and (3.8). Then

A=Qv'1)(a'v'a) — 1V a)

- ________L_‘___' Ja— ‘/ —1 _ 7 o—l \2
S G+ (7 V@) = W)

(820 G L=y (o e = D
) B an(p;z! ;; 2)(")} p %2,
(3.21) 2(n + 1)° { g% } p =2

Also
(3.22) a'v'(al’ — la/)v’*
= pla’ — pl'/(p + D]w @1 — 1a)w™/(p + 1) (p + 2)]
and
(323) 1V '(la’ — al’)v' = p"l'wT'(1a’ — al’)/(p + 1)'(p + 2)"".
If, in the (1 X n) vector a’v '(al’ — 1a’)v"" = B, the rth term is, say, 8, , then

p(p — 1)(n — (pn + 2)(pn + 2)"~*? N
(p + 1) (p —|— 2)n(n~r+l) pn—r+1

where, with S as defined in (3.18) and (3.19),

2p2(n . 1)(pn _|_ 2)(n—r+l)
(p + 1)3(1) 4 z)n(n—r-H) pn—r+l’

(3.24) Br =

P .

(3.25a) m =
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(3.25b) 7 =0 for2 <r=<n-—1,

p — D(pn + D(pn + 2)(pS — pn — 2)

R e V) {(
(3.25¢)

4 2pn + D(pn + 2)“"}.

n!p"
In the (1 X n) vector 'v ' (la’ — al’)v™"" = v, say, if the rth term is 7, , then
_ —p"*(p — D)(pn + 1)(pn + 2)"7*P

2 . ) r
(3 6) v (p + 1)3(17 + 2)3/2n(n—r+l) pn-rﬂ + ¥
where
B278) = 22 @+ Dn + 2)(pn + 2)”

(p + 1)*p + 2)*2nlp
(3.27b) v =10 for2 <r=<n-1
‘ "(pn + 1)(pn + 2) 2(pn + 2)®
6210 =T i + 2 {(” - D5 “(27»'7—}
The only other quantities necessary for substitution in the expressions of
Section 2 are 1’v"'l) a’v'a, and 1'v 'a. These quantities may be shown to be
given by

e Y4
DT A {(;7 ~ DS+ G+ Dipn + 2)

(3.28
n'p
av'ia= (2pn+ pn + 2) + _Tl—_l
(3.29) o 1 2y
Aplp — 1S — 2(pn + (pn + 2)} + ~_7’_"’__Z_)_~
Yyiem PO+ Dipn +2) P
(3.30) @+DE+2" @+ D0+2"

2(pn + z)‘"’}
iy 3

As the expressions obtained in this section tend to be rather long, we do not
write out the explicit formulae for the estimates. In any special case we merely
have to substitute the values of (3.20) et seq. in the general formulae (2.1) to
(2.6). In the following section we proceed to consider some special cases.

{(p — 1S+ (pn + D(pn + 2) +

4. Special cases.

a) Rectangular distribution, p = 1. Although the solution of the rectangular
distribution is well-known it is quoted here since it is a special case of the system
solved in Section 3.
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For the rectangular distribution, centered at u with variance o, the density
function is

3v/30, p=V3% =z <p+V3e

otherwise.

fx) = {

’

Using p = 1 in the expressions already derived yields the values for the ex-
pectation vector, variance matrix and inverse of the variance matrix as given by
Lloyd (1952). The resulting estimates of u and ¢ are:

i =3@n+2m), &= (+1Ew—20)/2V30n —1)
var (i) = 66°/(n + 1)(n + 2) var(3) = 2¢°/(n — 1)(n + 2)
cov (4, 8) = 0.

b) Right triangular distribution, p = 2. A less familiar example is the right
triangular distribution, which is unsymmetrical. A convenient form for the
density function is

f(x) {{ #)/o‘+2\/_}/9¢’ M—2\/§a§x<p+\/§¢

otherwise.

By substituting p = 2 in the general expressions of Section 3, the elements of
the expectation vector a and the variance matrix v are found to be

= {Gn(n—-r+l)2n—r+l/(2n + 1)(n—-1'+1) — 4}/,\/§,
Uy = 18{1’/(’/& + 1) - [n(n—r+l)2n—r+l/(2n + 1)(n~f+l)]2}’

= (s — 1)¢2 "y, /(2s — 1)*, r<s.
Also, for v, the inverse of v, we have
9 -6 0 0
-6 33/2 =10 O
I 41| 0 —10 73/3 -—14 0
18 0o -14 - . 0
0 . . -2(2n — 1)
| 0 0 —202n-—1) (8’ + 1)/n

Thus the estimates of 4 and ¢, and their variances, are

= n—l[zx(,)+2(l)+ +1x<..>Z ]/[ E—-—l:l

¢ =Bl [(Z1+2) 20 = 200 - 22| /[n 21 - 1]
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rrr 2 =2]/[n2i-1]
v @ = o Sl s+ |/[a 2l -]
cov(ﬁ,&)=m)[2n—l—z :l/[ E——l}

where all summations are for r from 1 to n unless otherwise indicated.

To facilitate estimation of the parameters of a distribution of this type, the
elements of the expectation vector a, variance matrix v, and the coefficients of
the ordered observations in the estimates 4 and & have been computed for
samples of size n =< 10.

Tables I and II give the values of , and v,, (for r < s). Values of v,.(r < s)
may be determined by considerations of symmetry. Tables IIT and IV give the
values of b, and ¢, , the elements of b and c, respectively, where i = b’x and
& = ¢’x. Table V gives the values of var (3)/¢’, var (8)/¢” and cov (4, 8)/s°.

Perhaps in some cases it would be more natural to estimate the extremities of
the distribution. Since these extremities are linear functions of the parameters
u and o, their least square estimates will be the same linear functions of £ and 4.

var (i) =

w,_

6. Single parameter system. When a distribution is defined by a single pa-
rameter, A, say, which is a measure of dispersion, then the density function will
be of the form f(x/X)/\. If we take ¥ = X /A, then Y will have a nonparametric
distribution, and we may assume that the expectation vector, §(Y) = a, and the
variance matrix, var (Y) = v, are known. Then the ordered least-squares esti-
mate, A, of \ is

(5.1) A = avix/a'va
and
(5.2) var \) = \¥/a'va.

The distributions of Section 3 may clearly be reduced to a system of single
parameter distributions to give density functions of the type (for p = 1):

(5.3) f@) = p(b — x/N)"/\b; 0<2z<br
where b = (p + 1) V/(p + 2)/p-

TABLE I
Ezpectation vector, «

~0.56569 -0.56569

~0.88893 --0.08081 --0.80812

—1.10443 —0.24244 --0.40406 --0.94281

—1.26116 —0.477583 +-0.11020 --0.59997 --1.02852

~1.38172 —0.65837 —0.11585 --0.336256 --0.73183 --1.08786

—1.47817 —0.80304 —0.29669 --0.12527 --0.49448 --0.82677 -1.13137

—1.55759 —0.92218 —0.44561 —0.04848 --0.29902 --0.61176 --0.89844 -+1.16465

—1.62448 —1.02251 —0.57103 —0.19479 +-0.13441 +-0.43070 --0.70229 -0.95448 -+-1.19092

—1.68181 —1.10850 —0.67852 —0.32020 —0.00667 -+-0.27550 --0.53416 --0.77435 --0.99952 +1.21218

e R
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TABLE II
Variance matriz, v
n =2 0.88000  0.32000
0.48000
]
n=3| 0.73837  0.35755  0.14694
0.53633  0.22041
0.27551
n=4; 0.62785 0.34177  0.18721  0.08127
0.51265  0.28082  0.12190
0.35102  0.15238
0.17778
n =5 0.54367 0.31551  0.19439  0.11250  0.05037
0.47327  0.29158  0.16875  0.07556
0.36448  0.21094  0.09445 .
0.24610  0.11019
0.12397
n==6| 0.47846  0.28913  0.18998  0.12368  0.07384  0.03372
0.43369  0.28497  0.18552  0.11075  0.05059
0.35621  0.23190  0.13844  0.06323
0.27055  0.16152  0.07377
0.18171  0.08299
0.09129
n=17| 0.42680 0.26519  0.18149  0.12603  0.08464  0.05154  0.02387
0.39779  0.27224  0.18904  0.12696  0.07731  0.03580
0.34030  0.23630  0.15869  0.09664  0.04476
0.27568  0.18514  0.11275  0.05221
0.20829  0.12684  0.05874
0.13953  0.06462
0.07000
n =8| 0.38498 0.24414  0.17184  0.12429  0.08903  0.06100  0.03766  0.01762
0.36621  0.25776  0.18644  0.13355  0.09149  0.05649  0.02643
0.32220  0.23304 0.16694  0.11437  0.07062  0.03304
0.27189  0.19476  0.13343  0.08239  0.03854
0.21910  0.15011  0.09269  0.04336
0.16512  0.10195  0.04770
0.11045  0.05167
0.05536
n=29| 0.35051 0.22576  0.16221  0.12067  0.09004  0.06580  0.04570  0.02851  0.01344
0.33865 0.24331  0.18100  0.13506  0.09869  0.06856  0.04276  0.02016
0.30414  0.22625  0.16882  0.12337  0.08570  0.05345  0.02520
0.26396  0.19696  0.14393  0.00998  0.06236  0.02040
0.22158  0.16192  0.11247  0.07016  0.03308
0.17811  0.12372  0.07718  0.03639
0.13403  0.08361  0.03942
0.08958  0.04224
0.04488
n =10} 0.32163  0.20972  0.15306  0.11624  0.08921  0.06790  0.05031  0.03531  0.02220  0.01053
0.31458  0.22050  0.17435  0.13381  0.10185  0.07547  0.05296  0.03329  0.01579
0.28699  0.21794  0.16726  0.12732  0.09433  0.06620  0.04162  0.01974
0.25427  0.19514  0.14854  0.11006  0.07723  0.04855  0.02303
0.21953  0.16710  0.12381  0.08689  0.05462  0.02591
0.18381  0.13620  0.09557  0.06008  0.02850
0.14755  0.10354  0.06509  0.03088
0.11093  0.06974  0.03309
0.07410  0.03515

0.03711
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TABLE III
Coefficients for estimating fi. (Vector b)
n = 2| 0.5000 0.5000
3| 0.4444 0.0741 0.4815
4/ 0.4091 0.0682 0.0455 0.4773
5/ 0.3840 0.0640 0.0427 0.0320 0.4773
6] 0.3650 0.0608 0.0406 0.0304 0.0243 0.4789
7| 0.3499 0.0583 0.0389 0.0292 0.0233 0.0194 0.4810
8 0.3375 0.0562 0.0375 0.0281 0.0225 0.0187 0.0161 0.4834
9] 0.3271 0.0545 0.0363 0.0273 0.0218 0.0182 0.0156 0.0136 0.4857
10; 0.3181 0.0530 0.0353 0.0265 0.0212 0.0177 0.0151 0.0133 0.0118 0.4879
TABLE IV
Coefficients for estimating &. (Vectorc)
n=2 —0.8839 --0.8839
3 —0.5500 —0.0917 --0.6416
4 ~0.4339 —0.0723 —0.0482 ~-0.5544
5 —0.3734 —0.0622 —0.0415 —0.0311 --0.5082
6 —0.3355 —0.0559 —0.0373 —0.0280 —0.0224 --0.4790
7 —0.3030 —0.0505 —0.0337 —0.0253 —0.0202 —0.0168 +-0.4495
8 —0.2898 ~0.0483 —0.0322 —0.0241 —0.0193 —0.0161 —0.0138 --0.4436
9 —0.2746 —0.0458 —0.0305 —0.0220 —0.0183 —0.0153 —0.0131 ~0.0114 --0.4319
10 —0.2624 ~0.0437 —0.0202 —0.0219 —0.0175 —0.0146 —0.0125 --0.0109 —0.0097 -+0.4225
TABLE V
Variance and covariance of estimates
n var (u)/a? var (¢)/o? cov (i, 0)/a?
2 0.5000 0.5625 0.1768
3 0.3148 0.2477 0.1244
4 0.2227 0.1506 0.09482
5 0.1691 0.1051 0.07599
6 0.1345 0.07938 0.06304
7 0.1107 0.06303 0.05364
8 0.09340 0.04946 0.04652
9 0.08037 0.04205 0.04097
10 0.07024 0.03641 0.03652

It is of interest to study this single parameter system, chiefly because the
limiting case, as p — o, is the exponential distribution f(z) = ¢*/\. Before
considering this system, however, it is useful to consider one general property
of estimates of this type. Lloyd derived necessary and sufficient conditions for
the variance of the ordered least-squares estimate of the mean to attain its upper
bound ¢*/n for symmetric distributions. The author of the present paper has
since extended these conditions to include the unsymmetric case [5]. This would
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suggest that in the single parameter case it may be possible to derive an upper
bound for var (A), using a similar approach.

We first note that the reduced ordered observations yuy(= Z/A, here) are
a permutation of the unordered observations y() , and hence
(5.4) Va = 228(m) = 8Qym) = 82 (ym) = n&(Y),
where §(Y) is the mean of the nonparametric parent population. A similar argu-
ment shows that
(5.5) 1'vl = n var (Y).

We also note that both v and v™' are symmetric and positive definite and
hence may be expressed as v = tt’ and v.© = (t7)'t™, where t is a lower tri-
angular matrix. It then follows that

avia = &/(t7)t"a = h'h = Y A%,
say, where h = t™'a. Similarly we find that
1l = 1'tt'l = k'k = D k%,

say, where k = t'l.

Now, the Cauchy-Schwarz inequality (O A% kD) = (hiki)® in matrix
form becomes (a’v 'a)(1’vl) = (1’a)’ or
(5.6) a’v'a = n[e(Y)])/var (Y).
The necessary and sufficient condition that the equality shall hold is that k; = gh;
for some constant ¢ and for all 7. In matrix form this becomes

(6.7) vl = ga.
Premultiplying by 1/, it follows that, necessarily
(5.8) g = var (Y)/8(Y).

Since var (\) = A\’/a’v'a, the variance of the ordered least-squares estimate
of A has an upper bound such that

(5.9) var (\) < N\’ var (Y)/n[s(Y)].
This upper bound is attained if, and only if,
(5.10) &Y)-vl = var (¥)-a.

It may also be shown by substituting (5.10) in (5.1) that if this upper bound
is attained the estimate of A is, necessarily, given by

(5.11) A = 1'x/n8(Y),

which is proportional to the arithmetic mean.

~ We now proceed to examine the ordered least-squares estimates of X for dis-
tributions of the type given by equation (5.3). In the notation of Section 3, we
consider a variate T = Y/b = X /b, for which.§(T) = a dnd var (T) = w.
Then for the distribution (5.3),
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(5.12) a=(p+ )Vp+ 21— Ja)/Vp
(5.13) v=(p+ 1%p + 2)Jw]/p
(5.14) v = pJw T/ + 1)’(p + 2)
where J is the permutation matrix
0 1
J=
1 0

Then the rth element of a is given by

(5.15) o=@+ DVPE+2A-n"/(n+1))/Vp.

Also, for r < s, when a, satisfies (3.9), )

(516) ver =1 = (p + Dp + 2{n"p/(on + 2)¥@ln — 8 + ) ~

An—r419n—g41 } / D

(5.17) v = (p+ 1)*(p + 2){n"p"/(pn + 2)” — a1} /p.
Also
(5.18) v =0, [r—s|22
(5.19) vrt1e = vrepr = —p(pln — 1] + L(pn + 2)"* /' (p + 1)%(p + 2),
2 2
p@2n—r+1)=2n—-r+1+1) ®
_1_”{ +2p<2[n—r+1]—1)+1}(’m+2)

.2 rr =
(520) v P9 + Dp + 2)

Also, with S satisfying (3.18) and (3.19),

(521) av'a = (p — 1)S + 2(pn + 2)"/p"n! — (pn + 2)

(5.22) = (pn +2)/(0 = 2) — 2(n + 2)P/p"nlp — 2), P2
The rth element of the vector a’v™" is given by

(523)  {av7} = @ = DEn+2)"Vp/(p+ Dn"P Vo2 + .

where 9, = 0forl S r=<n — 1,and

624 1= 20n+ 27 Vp/(p + Lnlp” VpF2.

From these expressions the ordered least-squares estimate of A and its variance

may be calculated.

6. Exponential distribution. Taking the limit of (5.3) as p — «, we find
f) = ¢™/\. The expressions given for a and v in Section 5 now become in-
. determinate. However, taking limits in (5.19) and (5.20), we obtain



314 F. DOWNTON

[(2n — D+ 1 —2(n — 1)° 0 0]
—2(n — 1)) @ —=34+1 =20 —2)?% 0
0 —2n -2 (2n =5 +1 - 0
vi=1 0 . .. 0
0 - 26 -8 0
0 —8 10 =2
i 0 0 -2 2 |

Also, a’v’'a = n, from (5.21), and a’v"' = 1/, from (5.23). Thus the ordered
least-squares estimate of the parameter \ is the sample mean, which is also the
maximum likelihood estimate.

To determine the variance matrix v in any particular case, the author has
found it simpler to invert the matrix v™* by triangular resolution [6] than to
evaluate the integrals which give the individual elements of v. It is also possible
to use this matrix v, obtained by inversion of v, to compute the elements of the
expectation matrix a.

We note that for the reduced exponential distribution

fly) = e, &Y) =1, and var (Y) =

and therefore the upper bound for var (A) is A*/n. But var (\) = \?/n, and hence
condition (5.10) operates. We have therefore that vl = a, or that the elements
of a are the row sums of v.

In this case an alternative method may be used for deriving the variance
matrix. It may be noted that since increasing the sample size by unity involves
adding a row and a column to the leading edges of the matrix v, such an in-
crease in sample size will affect v in a similar way. Thus, calculating the variance
matrix for any specific sample size n enables us to determine the variance matrix
for a sample size » + 1, and successively for all sample sizes greater than or,
conversely, smaller than n.

Suppose v, and V., are the variance matrices, with inverses v;' and vy,
of samples of » and n 4+ 1 ordered observations, respectively, and suppose v,
is known (by inverting v, or otherwise). It may be easily shown that v,,; may
be represented in partitioned form by

1 | —h'v,
Vaipp=0¢| ———l————————
—v,h l v./a + v, hh'v,
where @ = {1[(2n + 1)’ + 1] — h’v;h} P and b’ = (=n% 0, 0, - -+, 0). This
follows directly from the fact that in partitioned form

B (7[(27» + U )
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From the explicit expression for the matrix of v, above, it may be shown that

I'vi.'= (20,0, -+, 0) = — h’. Post-multiplying by v. gives — h'v, =1’ and
hence h'v,h = 7’ giving @ = (n + 1)™. Thus V.., and v, are connected by the
difference equation

1 1 1 11/ 010
(Tt il e bttt [ iy PREREH
M+ 1 i+ DV +11r] @+ 1) | Vo
A similar relation connecting a, and a.1, the respective expectation vectors, is
obtained from the fact that I'v = a’. Thus a,41 may be partitioned, such that

| |
an = {1:(n + Dar+ 1}/ n+1) =1/ +1) + (Ol'an),

which is the necessary difference equation. In the foregoing, the vectors1 and 0
have the number of elements suitable to their context.

7. Pearson Type III distribution. Consider a variate X, whose density function
is given by

(7.1) f@) = 2" /T(p)A” 0<z< o.

If we assume p is known, this is the Pearson Type III distribution depending
on a single dispersion parameter A. Since it has the functional form discussed
in Section 5, the relationships (5.1), (5.2), and (5.4) to (5.11) hold. If ¥ = X/A
we have for distribution (7.1) §(Y) = p and var (Y) = p so that from (5.9)

(7.2) var (A\) £ \/np.

It is known from general theory that for an unbiased estimate A* of \, the
variance of A\* has a lower bound given by

var (\¥) = [:n f (8 In f/0N)*f dq:]ﬂ.

Thus for any unbiased estimate A\* of ),
(7.3) var (\*) = \/np.

Since A is an unbiased estimate of A, both (7.2) and (7.3) hold. This can be so
only if
(7.4) ‘ var \) = \*/np.

This means that the variance of the ordered least-squares estimate attains
its upper bound, so that A is, necessarily, given by (5.11), that is, by A = 1’x/np,
which is also the maximum likelihood estimate. This proves also, for the Pearson
Type I1I distribution, that vl = a, since (7.4) can be true only under this con-
dition.

I am indebted to Dr. E. H. Lloyd for suggesting many improvements to the
original draft of this paper.
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