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1. Summary and Introduction. Theorems already enunciated in a previous
paper on quadratic forms are used to determine the effects of inequality of
variance and first order serial correlation of errors in the two-way classification
on the analysis of variance. It is found that when the appropriate null hypothesis
is true, inequality of variance from column to column results in an increased
chance of exceeding the significance point for the test on homogeneity of column
means, and a decreased chance for the corresponding test on row means. For
moderate differences in variance neither effect is large. First order serial correla-
tion within rows produces a large effect on the ‘“between rows” comparisons,
but little effect on the ‘“between columns’ comparisons.

2. The two-way analysis of variance classification. Consider the analysis of
variance for a two-way table with k columns and n rows, with one observation
in each cell. Experiments in which & treatments are tested in n blocks are an
important source of data classified in this way. In such tables the variance might
change from treatment to treatment due to the influence of the treatments
themselves. Changes in variance might also occur from block to block, for in some
circumstances where experimental material was inhomogeneous in mean from
block to block it might well be inhomogeneous in variance also.

A further source of departure from the assumptions usually made in the
analysis of variance concerns possible lack of independence between the “error”
components of the observations. In many types of experiments this difficulty is
met by the introduction of randomisation. Data occur, however, in circum-
stances where there is no possibility of using this device, usually because the
factor which is to be studied is the effect of time or position, which itself gives
rise to the correlation.

For instance, the first example of analysis of variance of a two-way table in
R. A. Fisher’s Statistical Methods for Research Workers [1] concerns data quoted
from Shaw [2] on the frequency of rainfall classified by hour of the day and
month of the year. As Fisher himself points out, strong serial correlation between
errors within months occurs because showers of rain which last more than one
hour are recorded in successive hours. No question of randomisation arises in
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THEOREMS ON QUADRATIC FORMS 485

this example. In discussing the analysis of variance table, Fisher remarks that
the serial correlation between hours within months entirely invalidates the
“between months” comparisons, but that the “between hours” comparisons
may still be made (as an approximate test). The truth of the latter part of this
statement is perhaps not immediately obvious, and it is of interest to make a
closer study of such examples.

Other instances of two-way tables in which serial correlation between errors
might be expected are quoted by Daniels [3] in experiments in wool research
where, for example, the variation in weight of slubbing coming from adjacent
positions on the wool card is considered. Daniels recognised that correlation
effects might invalidate the analysis of variance procedure and carried out some
theoretical investigation of the problem [4]. He considered the effects of small
inequalities of variance and small correlations between errors, using an approxi-
mate method. Tests for the existence of departures from assumptions in the two-
way table were discussed by Box in 1950 [5], when reference was given to the
results now published.

In what follows we retain the assumption of normality, but allow the variance
to differ from column to column and correlation to occur within rows. By sub-
stituting columns for rows we can also study the effect of differences in variance
from row to row and the effect of correlation within columns.

3. Distribution of items in the analysis of variance table. We need to refer to
theorems, equations and sections of a previous paper [6] with the same general
title. We indicate such reference by the addition of a prime to the number of the
theorem, etc. Thus Theorem 2.1’ and Section 5’ refer to Theorem 2.1 and Section
5, respectively, of the previous paper.

Suppose we have a two-way classification of observations with % columns and
n rows and y.; is the observation in the ¢t column and 4t row. Then we can per-
form an analysis of variance corresponding to the entries in the first three columns
of Table 1. We make the usual assumptions that y,; may be represented by a
linear model

n k
(3.1) ye=atBitvita, 2i=0 oy =0
Alternatively we can denote the model for all the elements of the £t column of
the table (¢ = 1,2, ---, k) by

(3:2) Ve. = al, + B + vl + z.,

where y;, is the n x 1 vector of entries in the ¢ column, z,, is the corresponding
vector of errors, 1, is an n x 1 vector of unit elements, and § an n x 1 vector of
row constants 81, B2, - -+, B, . We shall also need the notation y.; z; to denote
k x 1 vectors of observations and errors in the ™ row of the table.

We do not make the usual assumption that the z;; have the same variance
and are uncorrelated. Instead we assume that z_; follows the normal multivariate
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law with variance-covariance matrix 8(z~iz_§) = v = {v,}. We further assume
thatz; (j =1,2,---,7— 1,441, - -+ , n) follows the same law independently
ofz;.Thus vy, ++ ,vu, -, v are the k variances and vys , 033, +++ , 04, + - -,

vk—1+ the 3k(k — 1) covariances, the same for every row. This enables us to
study the effects of column to column heterogeneity of variance and/or “within
rows” correlation of errors. The expected values and null distributions of the
sums of squares, when the observations are so represented, are shown in Table 1.
They are derived below.

Let Y;. be an n x 1 vector of elements Y, Vi, - -+, Y., obtained from ye.
by orthogonal transformation Y,. = py.., and let the n x n orthogonal matrix p

have all the elements of its last row equal ton™"/?, thus ensuring that ¥, = n" .
Then

(3.3) Y:. = py:. = ad + B + v + Z,,

where d = pl,, B = pBand Z,, = pz,. .

Due to the nature of p, in the vector 3 the last element is n"'* and the remain-
ing elements are zeros, and in B the last element is zero, since D_1'8; = 0. The
transformed columns of the original two-way table and the transformed column
of row means may now be written out as follows:

Row M(ians
Bl+ZlI cee B1+le ttt BI+ZIC1 BI+Z.I
Bi+ Zy; Bi+ Zi; B; + Zy: B+ Z.;
Bn—-l + Zln—l e Bn—l + Ztn—l et Bn + an—l Bn—l + Z.n—l
n1/2(a + 'Yl) + Zin - nl/Z(a + 'Yt) + Ztn e n1/2(a + 'Yk) + an n1/2a + Z,n

Now consider the nk x 1 partitioned vector z and the nk x nk partitioned
matrices P and V defined by

roy oy o .
2 =(z;.iz5} - S TREEERE 4
Unlnévmln:: SEEEE7 T
. leIn:v%Ini"':UZkIn
(3.4:) P=}--- e jemmeee joomeee V =|--—---- [ § ------ j=mmmmm-
_0n§0ni“'§ P _vlklnivzklnf'“évkkln_

where I, is the n x » unit matrix and 0, is the n x 7 null matrix. For Z, denoting
the fector Pz of transformed variables, the matrix of variances and covariances
is ‘

(3.5) 8(ZZ") = &(P2z'P’) = Pg§(zz/)P’ = P'VP = V.
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Since we are concerned with normal variates, it follows that the Z,; are distributed
in precisely the same manner as are the z;; , that is the vector Z ; of transformed
errors in the ¢t row follows the normal multivariate law, with variance-covari-
ance matrix v, independently of the errors in the other rows.

Between columns sum of squares.

k k
(3.6) Qe =n ; Fe. — 9.)° = ; 0y + Zin — Z.2)°

and the matrix of the quadratic form ¢, = 21321 Zm—12Z ‘n)é is
3.7) m=1I — k711,

while the variance-covariance matrix for the vector of errors Z , is v. We have
therefore

(3.8) u = {u,} =vm = {v, — 7.}

where u,, is the element of the ¢ row and st* column of the matrix u and 7., is
the arithmetic mean of the entries in the ¢* row (or column) of v. It follows
from equation (2.5") that the expectation and null distribution of Q¢ are those
shown in Table 1 where the \’s are the latent roots of u.

Residual (error) sum of squares.

n k
(3.9) Q=22 (e = 0. — G + 7.
n—1 k _ . n—1 k =
= ”ZI(Yu"‘ Y.)° = _Z;tZI(Zu— Z.)".

Denote D oy (Zi — Z.)’ by q: 6 = 1,2, -+, n). Then g¢; follows the same
distribution as ¢; (7 = 1, 2, - - - , n) independently of ¢; . In particular it follows
the same distribution as ¢, discussed above. Also, D=7 ¢; = Qg is distributed
independently of Q¢ , in the form indicated in Table 1.

Between rows sum of squares.

B10)  Qu=kY Gi-7.0 =k 2 Vi=k2 (Bt 20"

=1

Remembering that Y ;=1 Bf = i 8; we have
(3.11) 8@ =k 2 81+ (v = Divw + (b — D},

where 7, is the average variance Ztv”/k and 7, is the average covariance

> > w/{k( — 1)}. Now Z; is distributed normally and independently of
s

Z,@%j=12,---,n). Hence, when the null hypothesis that Y 1" ﬁf = 0is
true, Qx is distributed like Xz = {3, + (k — 1)5,}x*(n — 1).
Since Z , is distributed independently of Z ; (z = 1, --- , m —.1), Qz and Q¢
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are distributed independently. Usually Qr will not be distributed independently
of @z, however, as will now be shown.

Dependence of Qr and Qg . To investigate the dependence of Qr and Qz we
transform the k x 1 vector Z ; of the transformed variates in the 7t row of the
two-way table to the vector W ; by means of the orthogonal transformation
W.: = RZ,;, where the elements of the last (k*) row of R = {r;} are all equal
to k% so that Wi; = k**Z.; . The variance-covariance matrix for the new variates
is now given by

3.12)  &W.W.) = &[RZ.Z:R) = R(Z.Z:)R' = RvR’
and therefore &(WuWw) = Kk D% . %,ru. Now Deurs = 0 for
t =1,2, ---k — 1. The covariances between Wy; and Wy;, Wai, + -+, Wiss

cannot therefore all be zero unless 7,, , the mean of entries in the st row or
column of v, is constant for all s, since in a k-space only one vector can be simul-
taneously at right angles to k¥ — 1 other linearly independent vectors. In par-
ticular the condition that 7. is constant for all s is satisfied when the observa-
tions are independent and the variances are equal (when v = ¢’I;) and also
when the observations are circularly correlated. This condition usually will
not be satisfied, however. In particular it will not be satisfied when the observa-
tions are independent but the variances are unequal, or when the variances are
equal and the observations are serially but not circularly correlated.

If Wy; is not distributed independently of W; (¢ = 1,2, --- , k — 1), then

Wi; will not be distributed independently of D %_1 W% and Qz = Y iy Wi
will not be distributed independently of Qz = D rt > i1 Wi

4, Distribution of test criteria.

Between columns test. When the appropriate null-hypothesis is true, the ratio
of mean squares (n — 1)Q¢/Qx is distributed like

(4.1) Xo/Xs = {2 xjxg(l)} / {2 Aix'(n — 1)},

where the \’s, which are the same for both numerator and denominator, are the
k — 1 nonzero latent roots of the matrixu = {»;, — 7.}, and the numerator and
denominator are distributed independently. We may use the exact series of
Theorem 4.1’ to find the value of Pr (Q¢/Qxz > Yo) and so provide a check on
the F approximation, provided we choose examples in which » is odd so that
n — 1is even.

To use the approximation of Theorem 6.1’ we require the first two cumulants
of Q¢ and @z when the null hypothesis is true. Using equations (2.5”) and (2.6')
we have

(4.2) KiQ¢) = k@ — 9.) = (k — 1)@y — D)

K:(Qc) = 2 Z Z e — 0¢) Wiy — 35.)

t=1 s=
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M-

-

t=

) k
(4.3) =2{ Zﬁf—%Zﬁi+Hﬁ}
s=1 t=1

=2

M-
M-

(vts - ét. — s, + 1-)..)2

t=1 s

where 5., = D i1 vi/k, while 5. = D i1 D i vw/k’ and B, = D ey v/k.
Now K(Qr) = (n — 1)K1(Q.) and K:(Qz) = (n — 1)K:(Qc¢). Hence the null
distribution of the ratio of mean squares (n — 1) Q¢/Qx is approximately that of
F{(k — 1)e, (k — 1)(n — 1)e¢} where

(4.4) e = K@y — 5.)/( — 1) {il > vk — 2% Zk‘, ;. — Ic2z7,2,}.

s=1 t=1

[
-

We notice that the comparison of column and residual mean squares is without
bias, whatever the nature of the matrix v. The discrepancy that arises is repre-
sented in the approximation as a reduction by the same fraction e of both degrees
of freedom in the F ratio.

Between rows test. For testing row means the appropriate ratio of mean squares
is (k — 1)Qr/Qz . As we have seen, Qr and Qg are not distributed independently
and the comparison is biassed unless the average covariance 7, is zero.

To obtain under the null hypothesis the exact probability

P = Pr {Qz/Qr > ¢a}

where (b — 1)¢po = Fofn — 1, (n — 1)(k — 1)} is the a probability point of the
F distribution with n — 1 and (n — 1)(k — 1) degrees of freedom, we rewrite
the probability in the form Pr {(Qz — ¢Qz) > 0} and employ Theorem 4.3’ as
explained in Section 5.

Let Z be a k(n — 1) x 1 vector of the Z,; arranged in the order Zy; , -+ - , Ziy ;
Zi, oy Zia; Zign—1), *** 5 Zia1) - Let V be the variance-covariance matrix
for the Z,; arranged in this order; thus V = &(ZZ’). Then under the null hypothesis
Sk B = D20 BE = 0, the quadratic forms Qr and Qx are each functions
of Z,

n—1
(4.5) Qe = k Z 7% = 2?MRZ
n—1 k !
(4.6) Qe =22 (Zu~Z.)" = 2'Ms Z.

1=1 =1

We require the probability that Z’MZ exceeds zero, where M = (M — ¢My).
Now My is a k(n — 1) x k(n — 1) matrix partitioned after every It row and
column, with each of its n — 1 diagonal positions occupied by a k x k& matrix
m, = k 1,1/ and zeros elsewhere:
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[ me 0 0]

O msi---| 0

) My = | e
[ 010 my

Also, My and V, and hence V(M — ¢M;), are of this same form with the & x k
matrices in the diagonal positions equal respectively to my = I, — k~'1,1; , to
v, and to v(mg — ¢mz). Hence the (n — 1)k roots of the determinental equation

(4.8) | VMz — ¢Mz) — Mioyy | = 0
are the k roots of the equation
4.9) " & = | V(mg — ¢mz) — NI | = | (3. — $(ves — 52) — M} | =0,

each repeated n — 1 times where §,, is the Kronecker delta. Thus

(410)  Pr {Qn/Qs > ¢} Pr{Zx X'(n — 1) + Z ax'(n = 1) > 0}
]==‘T

where A; and \; are respectively positive and negative roots of equation (4.9).

No serious lack of generality in conclusions will be introduced if, in the examples

we consider, we make the number of rows n odd so that n — 1 is even. Then

we can apply Theorem 4.3" and the required probability is

r/ (n—1)/2
(4.11) Pr {Qz/Qz > ¢} = -5:: Z;‘l @i,

where the o’s are obtained from equations (2.24") (2.25"), and (2.26").

The theory above may be used to study the distributions of the test criteria
for any matrix v. We use it here to consider the effect upon the significance
test when

(i) the errors are independent but inequality of variance from column to
column oceurs,

(ii) the errors have equal variance but are serially correlated within rows.

5. Effect of inequality of column variances in two-way table. If we assume
that the var 1ance covariance matrix v of “errors within rows” is diagonal, with
elements vy — o1, vas = a3 , "+, Uk = or, we have the case in which the vari-
ance changes from column to column but the errors are distributed independently.

Between colwmns test. The matrix u of equation 3.8 reduces to

(6.1) u = {(8; — k_l)ﬂf}-

Taking n — 1 even we can obtain the exact distribution of Q./Qz under the
null hypothesis, using Theorem 4.17.
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On simplification of equation (4.4) we find that (n — 1)Q./Qz is distributed
approximately as F{(k — 1)¢, (k — 1)(n — 1)e} where

= {14k —2)/k - 1)

and c is the coefficient of variation of the variances, given in equation (8.2"). The
calculated values in Table 2 indicate that, as would be expected, the divergencies
are similar to those for equal groups with the one-way classification.

Between rows test. Since the covariances vy, are all zero, the comparison of row
and error mean squares is not biassed. However, the row and column mean
squares are not distributed independently. After substituting o for v and zero
for v,,(¢ # s) in A, of equation (4.9), the resulting determinant may be simpli-
fied still further.

Here and in what follows we shall refer to the columns of a determinant,
counting from left to right, as ¢1, ¢, - -+, ete., and the rows, counting from top
to bottom, as 7y, 7y, - - -, etc. By adding ¢», ¢;, « - -, ¢ to ¢1, then subtracting
r x o3/a; from r; (j = 2,3, -+, k), and finally dividing each row by & and
changing signs in the last k¥ — 1 rows, we find that the required & values of A
are the solutions of the determinantal equation

(=1 A,
a—Xx  all+@/k A+ ¢)/k -+ oiQ + ¢)/k
A1 — o3/a))  por 4+ A 0 0
(5.2) . .
= | A1 — o3/0}) 0 ¢os + A ce 0 =0
A1 — oi/aD) 0 0 s gk A

In the one-way classification it appeared that for a given range of variances the
greatest discrepancies might be expected when & — 1 of the variances were equal,
while the k* was larger (say a times as large as the others). Suppose the vari-
ancesare 1,1, - -+ , 1, a. Then (5.2) reduces to

(63) @+ N*PEN — {(k— 1)1 — ¢a) + (@ — ¢)}\ — kag] = 0

from which all the \’s are readily obtained.

The results of a number of calculations using methods described above are
shown in Table 2. It appears that the discrepancies in probability both for the
test on rows as well as for the test on columns are not very large.

As was the case for the one-way classification, the effect of column-to-column
differences in variance is to cause the significance of column differences in mean
to be overestimated, although the differences in variance would have to be
large for the effect to become serious. In the row comparisons, discrepancies of
similar order but in the opposite direction occur, leading to underestimation of
significance. Comparison of the first and third lines with the second and fourth
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TABLE 2

Probabilities of exceeding 5% point when column variances are unequal
in the two-way analysts of variance table

True Chance (é)er Values in approximating
Number Number cent) of Exceeding | distribution F (', k) o*f
of of Column 5% point ratio of mean squares
Rows Columns Variances i T
n k Row Columns
Test, Test, 14 h
Exact Approx.

11 3 1 2 3 4.25 5.49 1.85(2) 18.46(20)
5 3 1 2 3 4.27 5.59 1.85(2) 7.38(8)
11 3 1 1 3 3.76 5.93 1.72(2) 17.24(20)
5 3 1 1 3 3.91 6.127 | 1.72(2) 6.90(8)

3 5 11113 4.47 6.921 | 3.21(4) 6.43(8)

3 11 11.--13 4.86 7.09 7.90(10) | 15.79(20)

* Bracketted values show appropriate degrees of freedom when variances
are equal.

1 5.98 by the exact method.

1 6.75 by the exact method.

lines in Table 2 shows that the effects are worst when all the variances but one
are at the lower end of the range. Comparison of the last four lines in the table
suggests that the between-rows discrepancy is worse when the number of rows
exceeds the number of columns, while the between-columns discrepancy is
worse when the number of columns exceeds the number of rows.

6. Effect of serial correlation of errors within rows. Suppose that the normally
distributed errors z;;, 22:, - -, 2k in the 7* row of the analysis of variance
table all have equal variance ¢ but are not distributed independently. Thus
v = o’o, where ¢ = {p;} is a k x k matrix with diagonal elements all unity and
the element p; of the ¢ column and st row is the coefficient of correlation
between z;; and z,; , the same for all 7. The theory described above enables us to
examine the effect of any such correlation we choose.

A type of correlation of particular irterest in practice is serial correlation
which might be expected to arise when the observations within rows or columns
were made at equally spaced intervals of time or space. This occurs when the
rows of the two-way table are associated with a time factor, as in Fisher’s ex-
ample [1] and in the growth and wear curve examples of [5], or with a space
factor as in Daniel’s examples [3].

Normally the first order coefficient p; , or p as we shall denote it, will be the
largest of the serial correlations. We shall study the case where this first order
serial correlation is taken into account but the effect of other correlations is
ignored. Thus we shall assume
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1 p 0 7
P 1 »
(6.1) e=|0 r
0 o - 1 p
L0 0 0 - p 1

To ensure positive definiteness we also assume
(6.2) lo| < [2cos {m/(k + 1)}]7.

“Between columns’ test. In order to determine the exact probability
Pr {Qc¢/Qr > ¢}, we require the latent roots of u of equation (3.8). Making the
substitution v = go’, where g is defined in equation (6.1), and writing A\ = \o,
the determinantal equation multiplied by &/¢” is

| kpm — KNI |
k— 1+ p) — kN kp — (1 4 p)
kp — (1420 k— (14 2p) — kN

= —(1 + 2p) ko — (1 + 2p)
—(1+ 2p) —(1 + 2p)
(6.3) -1+ p) —(1 + p)
—(1 + p) —(1+ p)
kp — (1 +2p) —(1+ 2p)
E—(+2) -k - —(1+2) |0
~=(1 + 2p) oo kp— (14 2p)
A+ e k=) - R

To solve the equation, the determinant is first reduced to a more tractable
form by a series of elementary transformations as follows:

(i) Adde: + ¢+ - + e toe.

(ii) Divide ¢; by —kN, and add (20 + 1) x 1 to ¢, ¢, ++ , ¢, in turn.

(iii) Substitute X’ = 1 4 p# and divide ¢z, -+ - , ¢ by kp.

(iv) Addcztoce,catocs, -+, cx tO Cry «

(v) Addrtorg, ry + rotors, «++, 1 4 ro -+ 4 71 to 7, and. multiply
Ck by k.

(vi) Add (& — 2)e; + 2¢; + 3c3 -+ + (kK — 1)ci—y t0 ¢, change the sign of
¢r , and interchange ¢; and ¢; .
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(vil) Add a new first row 70 = 10100 --- 0 and a new first column
¢ = 100 - - 0, which leaves the value of the determinant unchanged.

(viii) Add rotory, 72, +++ , 7% in turn, and interchange rows and columns.

We now have the equation in the more manageable form

11 1 1 1 11
o 1 2 3 k=2 k—1 &

| i =8 1 0 -~ 0 0 0

64) 0 1 -8 1 o o o |0
0 0 0 0 s 1 0
0 0 0 0 - 1 -8 1

the nonzero solutions of which give the required A’s via the relation
A = (1 4 pd,)¢". Denote the matrix of the determinant of (6.4) by L and a
column vector of real numbers (x,, 21, + - , 2x) by X. Then the necessary and
sufficient condition that a nontrivial solution exists for the equations Lx = 0
is that | L | = 0. Thus corresponding to each value of ¢ satisfying (6.4) there
exists a set of solutions xy, 21, -+, x .

The equations Lx = 0 may be written as

k k
(6.5) 2w=0 2w =0,
t=0 t=0
(66) xt—ﬁx,+1+xt+2=0, t=0, 1,"',]0—2.

The difference equation (6.6) with boundary conditions given by (6.5) is readily
solved by standard methods. With ¢ = 2 cos ¢, a set of solutions

6.7) z, = e — ¢

is obtained if ¢ = 2sw/k + 1 or if (k + 2) sin (3k¢) = ksin 3(k + 2)¢. In the
first case,

1, -+, 3k; k even,
6.8) 9 = 2 cos (ﬁ?f’i>, s = :
1, -+, 3k — 1); k odd.

In the second case, the remaining solutions for ¢ are most readily obtained by
putting ¢ = tan 3¢, yielding

kl2 A N
(S3 (1)1 — 25 — 1) (2’”8+ 21> B =0 & even,
=1 -

(6.9)

(k—1)/2

ZO (=1D°(: —2s — 1) (k ;; 2> (D= = 0 I odd.
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TABLE 3
Values of & for first order serial correlation

k=2 3 4 5 6 7 8 9 10

—1.0000 0.0000 | 0.6180 | 1.0000 | 1.2470 | 1.4142 | 1.5321 | 1.6180 | 1.6825
—1.3333 |—0.5000 | 0.1165 | 0.5486 | 0.8544 | 1.0760 | 1.2405 | 1.3655
—1.6180 |—1.0000 {—0.4450 | 0.0000 | 0.3473 | 0.6180 | 0.8308
—1.7165 |—1.2153 |—0.7258 |—0.3057 | 0.0407 | 0.3229
—1.8019 |—1.4142 |—1.0000 |—0.6180 | —0.2846
—1.8429 |—1.5203 |—1.1588 |—0.8113
—1.8794 |—1.6180 |—1.3097

—1.9001 |—1.6772
—1.9190
TABLE 4
Between columns test: Values of e

p k=3 k=25 k=10
—0.4 0.9576 0.8862 0.8233
—0.2 0.9863 0.9640 0.9453
+0.2 0.9769 0.9507 0.9222
+0.4 0.8832 0.8033 0.7718

Since ¢ = 2(1 — #))/(1 + #*) is a single valued function of ¢, the polynomial
equations (6.9) in ¢ supply the 3k — 1 and (k — 1) values of ¢ required when
k is even and odd, respectively, to give with (6.8) the total k¥ — 1 solutions.

Values for k = 2, 3, ---, 10 are shown in Table 3, whence values of the \’s
may be obtained for any chosen values of p and o from the relation
Ae = (1 + pd)d”. Using these values we may obtain the required probabilities
from the exact series of Theorem 4.1’.

If we use the F approximation we consider that the ratio of mean squares
(n — 1)Q¢/Qx is distributed approximately as F{(k — 1)e, (n — 1)(k — 1)},
where

(6.10) e = {14+ 020k + 1)k — 2)"/(k — 1)(k — 20)%}7".

Values of the constant e for various values of &k and p are shown in Table 4.
Since there is no bias and the effect of moderate correlation does not greatly
reduce the degrees of freedom in the approximation, no large discrepancies will
be expected in the between-columns comparison of the analysis of variance.
Some calculated values are given in Table 6.

“Between rows”’ test. As we have seen already, the expectations of the row
and error mean squares are equal only if the average covariance 7, = 0. For
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TABLE 5
Between rows test: values of bias B

p k=3 k=235 k=10
—-0.4 0.3684 0.3103 0.2593
—-0.2 0.6471 0.6296 0.6154
+0.2 1.4615 1.4348 1.4167
+0.4 2.0909 1.9524 1.8696

TABLE 6

Probability (per cent) of exceeding & per cent point when first order serial correlation
between errors within rows is p, for analysis of variance
table with & rows and 6 columns

First order serial correlation, p.............. —0.4 | —0.2 0.0 0.2 0.4

Exact per cent probability for test on

TOWS. i e e ettt 0.03 | 1.01 | 5.00 | 13.05 | 24.70
Approximate per cent probability for

test oncolumns. . .................. 5.90 | 5.27 | 5.00 | 5.37 | *6.68

* By exact method, per cent probability is 6.43.

the case of first order serial correlation considered above, the expectations,
under the null hypothesis, of the row and error mean squares are, respectively,

1 + 2ok — 1)/k)a? and (1 — 2p/k)e>
The ratio B of these expectations is
(6.11) B =1+ 2ok/(k — 2p).

Values of B for a number of values of & and p are shown in Table 5. This bias
coefficient can be large even with only moderate correlation, and we shall there-
fore expect discrepancies to arise in the between-rows comparisons. Using
equations (4.9), (4.10), and (4.11), exact probabilities for the between-rows test
are obtained.

The results of a number of calculations for the case of the two-way table with
five rows and columns are shown in Table 6. These confirm that very large
discrepancies in the between-rows test in the directions expected do in fact
occur, but that the between-columns comparisons are much less seriously affected.
In particular, the remarks of R. A. Fisher concerning the analysis of the rainfall
data are seen to be justified. )

Acknowledgement. I am indebted to Mrs. Margaret Edmondson for valuable
assistance with the calculations.
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