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under equivalence [S, P]. A subfield equivalent to a statistic need not itself be a
statistic. In an attempt to avoid this difficulty, one may define a pseudo-statistic
as any subfield equivalent to a statistic. If Lemma 3 remained valid for pseudo-
statistics in the sense that a member of C, is a pseudo-statistic if and only if it
is equivalent to S, , this would establish the desired result.

The following example shows that this stronger version of Lemma 3 is not
correct. Let S, be the class of all Lebesgue sets on the real line and S, the class of
all Lebesgue sets differing only by a set 0 from a set symmetric with respect to
the origin. Clearly, {x} ¢ Sy for all z so that Sy e C,. Also S, is a pseudo-
statistic since it is equivalent to the subfield induced by T'(x) = |z|. But clearly
Sy and S, are not equivalent.
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A NOTE ON CONFIDENCE SETS FOR RANDOM VARIABLES

LioNEL WEIsS
University of Virginia

Suppose the chance variables X, -+, X, Y1, -+, ¥, have a joint prob-
ability distribution depending on the unknown parameters 6, , - - - , 6, , but other-
wise of known form. We assume that there is a set of sufficient statistics for

1, -, 0, denotedby Ti(X1, ,Xn,Y1, -+, V), -,

T(X1, -+, Xm, Y1, -+, Y,). Weshalllet X denote the vector (X, -+ , Xn),
Y the vector (Y1, ---, ¥,), 0 the vector (6,, - -, 6), and T(X, Y) the vector
(TW(X, Y), -+, T«(X, Y)). Ps(A) shall denote the probability of A when the
vector of parameters equals 6, and Py(A | B) shall denote the conditional proba-
bility of A given B when the vector of parameters equals 6.

Given a number « between 0 and 1, if for each vector X we can find a set S(X)
in n-dimensional Euclidean space such that Py(Y in S(X)) = « identically in
0, then the system of sets S(X) is called a “parameter-free confidence set of level
a for the random vector Y.”

Since T'(X, Y) is a set of sufficient statistics for 8, the joint conditional distribu-
tion of Y given that (X, Y) = ¢ = (&, - -, t,) is independent of 8. But then
for any given vector ¢, it is possible to construct a region S’(¢) in n-dimensional
Euclidean space such that Po(Y in S’(¢) | T(X, ¥) = ¢) = « identically in 6
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(This last sentence is true if the conditional distribution of Y given that
T(X, Y) = tisabsolutely continuous. In the other cases only approximate equal-
ity may be possible.) Then we have Py(Y in S’(T(X, Y))] = « identically in 6.
Now for any X, we define S(X) as the set of vectors ¥ such that Y is in
S'(T(X, Y)). Clearly, S(X) is a parameter-free confidence set of level a.

This construction is the exact analogue of Neyman’s construction of confidence
sets for a parameter, as described in [1].

As an example, we discuss the problem that motivated this note. We have
two solutions, each consisting of a certain type of particles suspended in water.
The relative concentration of the two solutions is known, but not the absolute
concentration of either. That is, we do not know the average number of particles
per unit volume for either solution, but we do know the ratio of the average
numbers of particles per unit volume for the two solutions. In taking this ratio,
w e shall understand that the numerator refers to the second solution, and shall
denote the ratio by R. V; cubic centimeters of the first solution are drawn and
the number of particles in this volume is counted. We denote this number by X.
Vs cubic centimeters from the second solution are to be injected into an experi-
mental animal. We denote the number of particles injected into the animal by Y.
Y will never be directly observed. Given a number a between 0 and 1, the prob-
lem is to find two functions of X, say L;(X) and L.(X), with Li(X) < L.(X),
such that P[L,(X) £ Y £ L.(X)] = ano matter what the values of the unknown
absolute concentrations are. From familiar considerations, it is reasonable to
assume that X and Y are independently distributed, each with a Poisson dis-
tribution. If 6 denotes the expected value of X, then the expected value of Y is
r8, where r = R(V,/V,) and is therefore known. 8 is unknown. Then we wish to
have Py[L1(X) £ Y £ Ly(X)] = aidentically in 6. It is easily verified that X + Y
is a sufficient statistic for 8, and that

P(Y = y|X+ ¥ =2) = (;)[r/(l + AP/ + P,

that is, the conditional distribution of ¥ given X - Y is binomial and is inde-
pendent of 8. For any given value of X + Y, we can find two numbers M,(X + Y)
My(X +Y)sothat PIMi(X + Y) S Y < My(X 4+ Y) | X + Y]isapproximately
equal to « irrespective of the value of 6. If X is large enough to make both
Xr/(1 + r) and X/(1 + r) large, then the conditional distribution of ¥ given
X + Y is nearly normal, and we have as a good approximation

M(X+Y)=X+Yr/0+71—k/&+ Dr/A + S,
MX +7)=X+Y)w/A+1+ /& + Dr/ad + 95,

where & depends on « and is found from the table of the normal distribution.
Then the confidence set S(X) is the set of all values of ¥ such that M;(X + Y) £
Y £ My(X + Y), and using the approximate values of M;(X + Y) and
My(X 4+ Y) from the preceding sentence, we find that S(X) consists of all




144 D. BASU

values of ¥ between the limits
Li(X) = 20X + rk* — kNI + 40X (1 + 1)}, and
Ly(X) = 3{2rX + 7k 4+ kB2 + 4rX(1 + 1)}

Therefore, for these limits, we have that P[Li(X) < YV =< L.(X)] is approxi-
mately equal to @, no matter what the value of 6 is.
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AN INCONSISTENCY OF THE METHOD OF
MAXIMUM LIKELIHOOD -

By D. Basu
University of California, Berkeley

An example was given by Neyman and Scott [2] to show that there are situa-
tions where the method of maximum likelihood leads to inconsistent estimators.
In their example considered, the observations were supposed to be drawn from
an infinite sequence of distinet populations involving an infinite sequence of
nuisance parameters.

An example is given here to demonstrate that even in simple situations where
all the observations are independently and identically distributed and involve
only one unknown parameter, the method of maximum likelihood may lead us
astray. The example typifies the situations where the correct method of setting
up a point estimate should begin with a test of hypothesis between two composite
alternatives.

Let A be the set of all rational numbers in the closed interval (0, 1) and B
any countable set of irrational numbers in the same interval. Let X be a random
variable that takes the two values 0 and 1 with

0 if 6 ¢ A,
PX =1 =
1—9 if 9 ¢ B.

If r is the total number of 1’s in a set of n random observations on X, then from
the rationality of r/n it follows at once that the maximum likelihood estimator
of 8 is r/n. But /n converges (in probability) to 6 or 1 — 6 according as 6 ¢ A
or 6 ¢ B.

Now, since A and B are both countable sets, it follows [1] that there exists a
consistent test for the composite hypothesis 8 ¢ 4 against the composite alterna-
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